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Abstract. Biological models typically depend on many parameters. As-
signing suitable values to such parameters enables model individualisa-
tion. In our clinical setting, this means finding a model for a given patient.
Parameter values cannot be assigned arbitrarily, since inter-dependency
constraints among them are not modelled and ignoring such constraints
leads to biologically meaningless model behaviours. Classical parameter
identification or estimation techniques are typically not applicable due to
scarcity of clinical measurements and the huge size of parameter space.
Recently, we have proposed a statistical algorithm that finds (almost) all
biologically meaningful parameter values. Unfortunately, such algorithm
is computationally extremely intensive, taking up to months of sequen-
tial computation. In this paper we propose a parallel algorithm designed
as to be effectively executed on an arbitrary large cluster of multi-core
heterogenous machines.

1 Introduction

Systems biology models aim at providing quantitative information about time
evolution of biological species. One of the main goals of systems biology in a
health-care context is to individualise models in order to compute patient-specific
predictions (see, e.g., [24]) for the time evolution of species (e.g., hormones).

Depending on the system at hand, many modelling approaches are currently
investigated. For example, see [22,21] for an overview on discrete as well as
continuous modelling approaches, and [49] for a survey on stochastic modelling
approaches. In biological networks modelled with a system of Ordinary Differen-
tial Equations (ODEs) depending on a set of parameters (as in, e.g., [35,50,39])
model individualisation can be done by assigning suitable values to the model
parameters. Such biological models depend on many (easily hundreds of) pa-
rameters, whose values cannot be chosen arbitrarily because of inter-dependency
constraints among them (see, e.g., [26]) that, usually, are not explicitly known
and thus are not modelled. If model parameter values are chosen ignoring such
constraints, then the resulting model behaviour is biologically meaningless.

Model identification (see, e.g., [27]) techniques are typically used to compute
values for model parameters so that a suitable error function measuring mis-
match between model predictions and experimental data is minimised (parame-
ter estimation). If such a value exists and is unique, the model is said identifiable.
In a clinical setting, for each patient, only a small number of measurements is
available, since they can be costly, invasive and time-consuming. Therefore, al-
though in principle model identification techniques could be used to compute
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patient-specific model parameters, in practice, because of the large amount of
measurements needed (see, e.g., [9]), they are typically used to compute a default
parameter value that averages among the behaviours of many patients (as, e.g.
in [39]). Parameter estimation approaches cannot be used either, since with such
a few data they would not take into due consideration inter-dependencies among
model parameters [26].

Motivations To overcome scarcity of measurements, we proposed a two-
phase approach [47]. First, an off-line phase that accounts for parameter inter-
dependencies [26] greatly narrows down the search space to a set S of parame-
ter values yielding biologically meaningful model behaviours. Second, an on-line
phase computes a patient-specific model by selecting in S those parameter val-
ues that minimise mismatch with respect to patient measurements. This enables
fast patient-specific predictions for the time evolution of each species of interest.

In general, to decide if time evolution of species concentration is biologically
meaningful takes a domain expert. To build a general purpose tool that can
automatically search through millions of model parameter values, in [47] we pro-
posed a criterion which regards as Biologically Admissible (BA) those parameter
values entailing time evolutions with a second order statistics close enough to
that of the model default parameter values.

The computation of the set S of BA values for the model parameters re-
quires to explore the set of all possible values for the parameter vector, that is
typically huge. Since an exhaustive exploration would be unfeasible, in [47] a
Statistical Model Checking (SMC) based approach is proposed. Nonetheless, the
exploration of the parameter space may take months of sequential computation.

Main contributions Our main contribution is a SMC parallel algorithm and its
distributed multi-core implementation to compute the set of all BA parameter
values. We propose a master-slave architecture where a single master process
(Orchestrator) implements the SMC algorithm and delegates to a high number
of slaves (BA Verifiers) the numerical integration of the ODE system defining the
model. As a consequence, our parallel algorithm will benefit from the availability
of many heterogeneous computational units (e.g., a data-centre in the cloud).

The SMC algorithm proposed in [47] would require too much synchronisation
in a parallel context. Here, we define a new random sampling process at the basis
of our SMC algorithm, which enables massive parallelisation of BA Verifiers.

We developed our distributed multi-core tool in the C language using Mes-
sage Passing Interface (MPI) [42]. We evaluate effectiveness of our approach by
using it on the GynCycle model in [39], an ODE model which predicts blood
concentration of several species during female menstrual cycle. We show that
our implementation achieves high efficiency even when using dozens of compu-
tational cores (e.g., efficiency is 74% when using 80 cores).

Related work The input to our algorithm consists of a system model along
with the default value for its parameters. The GynCycle model considered in
our case study has been presented in [39] and the default (inter-patient) values
for its parameters have been computed in [11] using model identification (often
referred to as parameter identification in our setting) techniques [27].



In recent years, parallel and distributed computing has received attention in
order to cope with the complexity of biological systems. See [5] for a survey of
parallel methods to solve ODEs, parallel model checking, and parallel simulations
in biological applications.

Statistical Model Checking mainly addresses system verification of stochastic
systems with respect to probabilistic temporal properties or continuous stochas-
tic properties (see, e.g., [41]). Several parallel and distributed approaches to SMC
have been introduced (see, e.g., [3,40]), some of them motivated by the complex-
ity of biological models [4]. Here, we focus on deterministic biological systems
modelled with ODEs, and we apply SMC techniques (along the lines of [18]) to
infer statistical completeness of our set of BA parameters.

Parallel approaches close to ours are those in [7,44,8], where the problem of
computing all (discretised) model parameter values meeting given LTL proper-
ties has been investigated. We extend such works in two directions. First, the
above mentioned papers focus on piecewise affine ODE systems, whereas we can
handle any (possibly non-linear) ODE system. Second, they aim at computing
a maximal set of parameters satisfying a given LTL property. Thus, when the
model changes, a new LTL property has to be provided by domain experts.
Our approach infers such a system property by the default value for the model
parameters, thus decreasing the amount of input needed from domain experts.

A key feature of parameter identification approaches is their ability to give
information about parameter identifiability (see, e.g., [9] and citations thereof).
Gradient-based methods, as, e.g., the classical one in [25], provide a local op-
timum solution to the parameter estimation problem. Global methods, such as
[28], provide a global optimum solution whereas heuristics approaches as evo-
lutionary algorithms (see, e.g., [6,45]), provide near-global optimal solutions.
All such approaches do not provide information about parameter identifiabil-
ity. When observations are scarce, parameters usually become non-identifiable.
Studying the correlation among system parameters can reduce the number of
data needed for identifiability, see for example [37,26]. Our goal here is to sup-
port model individualisation from clinical measurements. This means that we
need to compute model parameters from a few (say, 3) observations about a
small subset (4 in our case study) of the species occurring in the model (33
in our case). Because of scarcity of measurements, neither model identification
approaches nor parameter estimation approaches can be used in our setting.

Model checking based parameter estimation approaches have been investi-
gated for example in [20,12,38]. Such approaches differ from ours, since they do
not address the problem of automatically restricting the search space. Model
checking techniques have been widely used in systems biology, to verify time be-
haviours. Examples are in [23,19,14,16,35]. Such approaches focus on verifying a
given property for the model trajectories, whereas our main problem here is to
compute all biologically plausible values for the model parameters.

We note that computing the set of all model parameter values that satisfy
a given property is closely related to that of computing all control strategies
satisfying a given property. In a discrete time setting this problem has been
addressed, for piecewise affine systems and safety properties, in [33,2,1,34].



2 Background

Unless otherwise stated, all forthcoming definitions are based on [47,43]. Through-
out the paper, we denote with [n] the set {1, 2, . . . , n} of the first n natu-
ral numbers and with R+, R≥0 and R the sets of, respectively, positive, non-
negative and all real numbers. We also denote with (R≥0 × R≥0)∗ the set of
pairs (a, b) ∈ R≥0 × R≥0 such that a ≥ b.

2.1 Parametric Dynamical Systems

We model biological systems using dynamical systems. Usually, a dynamical
system comes equipped with a function space that models both controllable (e.g.,
treatments) and uncontrollable inputs (disturbances). Here, we do not address
treatments or disturbances and accordingly we omit inputs from Def. 1.

Definition 1 (Parametric Dynamical System). A Parametric Dynamical
System (or, simply, a Dynamical System) S is a tuple (X ,Y, Λ, ϕ, ψ), where:

– X = X1 × . . .×Xn is a non-empty set of states ( state space of S);
– Y = Y1 × . . .× Yp is a non-empty set of outputs ( output value space);
– Λ is a non-empty set of parameters ( parameter value space);
– ψ : R≥0 ×X → Y is the observation function of S;
– ϕ : (R≥0 × R≥0)∗ × X × Λ → X is the transition map of S. Intuitively,
ϕ(t2, t1, x, λ) is the state reached by the system (with parameter values λ) at
time t2 starting from the state x ∈ X at time t1.

Remark 1. To simplify notation, unless otherwise stated, we assume that the set
of parameters Λ has the form X ×Γ (where Γ is a non-empty set). Therefore, a
parameter λ = (x0, γ) ∈ Λ embodies information about the initial state x0 of a
system trajectory. Such a system trajectory is a function of time x(λ)(t), which,
for each t ∈ R≥0, evaluates to ϕ(t, 0, x0, γ). In the following, abusing notation,
we write x(λ, t) instead of x(λ)(t). Analogously, we write xi(λ, t) [yi(λ, t)] for
the time evolution xi(λ)(t) [yi(λ)(t)] of the ith state [output] component with
parameters γ starting in x0 from time 0.

Example 1. Dynamical systems whose dynamics is described by a system of Or-
dinary Differential Equations (ODEs) depending on parameters are currently of
great interest as a mathematical model for biological networks (see, e.g., [15,39]).
In this paper, we will use as a case study the GynCycle model presented in [39]. It
is a ODE model for the feedback mechanisms between Gonadotropin-Releasing
Hormone (GnRH), Follicle-Stimulating Hormone (FSH), Luteinizing Hormone
(LH), development of follicles and corpus luteum, and the production of Estra-
diol (E2), Progesterone (P4), Inhibin A (IhA), and Inhibin B (IhB) during the
female menstrual cycle. The model aims at predicting blood concentrations of
LH, FSH, E2, and P4 during different stages of the menstrual cycle. The model
is intended as a tool to help in preparing and monitoring clinical trials with new
drugs that affect GnRH receptors (quantitative and systems pharmacology).

In our black-box approach, the system transition map models our call to
a solver (namely, Limex [13]) computing a solution to the ODEs defining our
dynamical system. This is along the lines of simulation based system level formal
verification as in [29,31,30,32,46,10].



2.2 Biological admissibility

In general, given a value λ for the (vector of) model parameters, it takes a
domain expert to decide if a time evolution x(λ, t) is biologically meaningful.
Indeed, many parameter values lead to time evolutions for the model species
that are not compatible with the laws of biology. Our goal is to build a general
purpose tool that automatically filters out biologically meaningless parameter
values. Following [47], we provide a formal criterion for biological admissibility,
by asking that the time evolution of x(λ, t) is similar enough to that of x(λ0, t),
that is the one entailed by the model default parameter value λ0. To this end,
we introduce three measures of how similar two trajectories are.

Given a function f from R to R and α, τ ∈ R, we denote with fα,τ the
function defined by fα,τ (t) = f(α(t + τ)) for all t. Here, α and τ are used to
model, respectively, a stretch and a shift of f . Given two functions f and g from R
to R, the cross-correlation (see, e.g., [48]) 〈f, g〉(ξ) between f and g is a function

of ξ (where ξ ∈ R is the time lag) defined as: 〈f, g〉(ξ) =
∫ +∞
−∞ f(t)g(t + ξ)dt.

We consider the normalised zero-lag cross-correlation function ρf,g, defined as

ρf,g = 〈f,g〉(0)
‖f‖‖g‖ , where, for any f , ‖f‖ is the L2 norm of f , i.e.,

√
〈f, f〉(0). The

higher ρf,g the more similar f and g (e.g., f and g have the same peaks). In
particular, ρf,g is 1 if f is equal to g up to an amplification factor.

Let S be dynamical system with n state variables and a default parameter
value λ0. Given a parameter value λ and a finite horizon h ∈ R≥0, let xi(λ0, t) and
xi(λ, t) be the time evolutions of species xi (for each i ∈ [n]) under parameters λ0
and λ respectively. Being time evolutions, both xi(λ0, t) and xi(λ, t) are defined
for 0 ≤ t ≤ h. Anyway, to easily match the above general definition of cross-
correlation, we define such functions on the whole set of real numbers, as being
0 for any t < 0 or t > h. In order to model biological admissibility, we define the
following three functions (i ranges over [n], α, τ ∈ R):

ρλ0,λ,i(α, τ) = ρxi(λ0),x
α,τ
i (λ) µλ0,λ,i(α, τ) =

∣∣∣∣∣
∫ h
0

(xi(λ0, t)− xα,τi (λ, t))dt∫ h
0
xi(λ0, t)dt

∣∣∣∣∣
χλ0,λ,i(α) =

∣∣(‖xi(λ0)‖2 − ‖xα,τi (λ)‖2)
∣∣ / ‖xi(λ0)‖2

The normalised zero-lag cross-correlation ρλ0,λ,i(α, τ) measures the similarity of
the trajectories xi(λ0, t) and xi(λ, t) as for qualitative aspects (for example, if
they have the same peaks), when xi(λ, t) is subject to stretch α and time-shift
τ . The normalised average differences µλ0,λ,i(α, τ) and the normalised squared
norm differences χλ0,λ,i(α, τ) are two measures of the average distance between
xi(λ0, t) and xi(λ, t), when xi(λ, t) is subject to stretch α and time-shift τ .

In Def. 2, we use these functions to formalise the notion of Biologically Ad-
missible (BA) parameter λ with respect to a default parameter λ0. Intuitively,
λ is BA if the three measures above are all above or below certain thresholds.

Definition 2 (Biologically Admissible parameter). Let λ0, λ ∈ X ×Λ be
two parameters. Let A ⊆ R+, B ⊆ R be two sets of real numbers such that 1 ∈ A
and 0 ∈ B. Given a tuple Θ = (θ1, θ2, θ3) of positive real numbers, we say that
λ is Θ-biologically admissible with respect to λ0, notation admA,B(λ0, λ,Θ), if
there exist α ∈ A and τ ∈ B such that, for all i ∈ [n]: (ρλ0,λ,i(α, τ) ≥ θ1) ∧
(µλ0,λ,i(α, τ) ≤ θ2) ∧ (χλ0,λ,i(α, τ) ≤ θ3). �



3 Computation of Admissible Parameters

Our goal is to compute the set S of (with high confidence) all Biologically Ad-
missible (BA) parameter values with respect to a default parameter value λ0
validated by the model designer as biologically meaningful.

Since small differences in values are meaningless from a biological point of
view, we consider a (grid-shaped) discretised parameter space Λ̂ that is a finite

subset of the set of possible parameter values Λ. An exhaustive search on Λ̂ would
be unfeasible, due to the large number of parameters to identify (75 in our case

study) that makes Λ̂ huge (1075 elements if we consider 10 possible values for each
parameter). To overcome such an obstruction, we follow an approach inspired
by Statistical Model Checking (SMC) [18,17]. Statistical Hypothesis Testing is
used in [47] to compute, with high statistical confidence, the set S of all BA
values with respect to a default value λ0 for the model parameters.

Given arbitrary values in (0, 1) for ε (probability threshold) and δ (confidence
threshold), the SMC algorithm in [47] computes the set S of BA parameters by

randomly sampling the discretised parameter space Λ̂ and adding to S those pa-
rameter values λ ∈ Λ̂ which are shown (by simulation) to be BA. The algorithm
terminates when set S remains unchanged after N = dln δ/ ln(1− ε)e attempts.
At this point, following [18], in [47] it is proved, that, with statistical confidence
1 − δ, the probability that the sampling process will extract a BA parameter
vector value not already in S is less than ε.

Unfortunately, the SMC algorithm proposed in [47] cannot be extended to
work in a parallel context efficiently, as too much synchronisation would be
required. Here, we define a new random sampling process at the basis of our
SMC approach, which enables massive parallelisation of the computation of S.
Our new algorithm has been explicitly designed as to be easily deployed on a
cluster of heterogeneous multi-core machines connected by a network.

3.1 Algorithm Outline

An overall high-level view of our algorithm deployed on multiple machines con-
nected by a network is shown in Fig. 1. The parallel algorithm that we present
here consists of one Orchestrator and many BA Verifiers.
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Fig. 1: Parallel algorithm Architecture.

Orchestrator The orchestrator initialises the set S of BA parameter values to
the singleton set {λ0}. Then, at each iteration, it randomly chooses N parameter



values λ1, . . . , λN ∈ Λ̂ independently (where N = dln δ/ ln(1−ε)e) and delegates
the verification of each of them to an idle BA Verifier. After having collected
all the N answers, the Orchestrator adds to the set S those parameter values
returned as BA. If S changes (i.e., at least one of the N randomly generated
parameters is BA and not already in S), a new round of this process starts,
otherwise the set S computed so far is returned as the final result.

The sampling space Λ̂ is given by the set of discretised values for the model
parameters. Our sampling strategy (Sect. 3.2) guarantees that any parameter

value λ ∈ Λ̂ can be extracted with non-zero probability, as required by [18,47].
To speed up our procedure, we give a higher probability to parameter values that
differ from some parameters already in S for a small number of components.

Note that, at each iteration, the Orchestrator adds up to N parameters to
S. Thus, increasing the number of parallel BA Verifiers helps a faster growth of
the set of BA parameter values S.

BA Verifiers Each BA Verifier repeatedly takes a parameter λ as input from
the Orchestrator, checks if it is Biologically Admissible, and sends back the
answer (consisting of the result and the parameter value) to the Orchestrator. To
check whether parameter λ is admissible, the BA Verifier in charge runs its own
instance of the Limex solver to compute the time evolutions of all species under
parameter λ and checks whether the normalised zero-lag cross-correlation, the
normalised average differences, and the normalised squared norm differences for
all species are above or below the given thresholds Θ = (θ1, θ2, θ3), as prescribed
by Def. 2.

We observe that the computation distributed to the BA Verifiers is the heav-
iest part, since it entails to numerically solve the system of differential equations
(for a given discretisation of the time output period [0, h] into a finite set T
of time-points) and to compute the functions defined in Sect. 2.2 by numerical
integration. In order to speed up their computation, BA Verifiers invoke the
Limex solver just once for each parameter value λ: given the requested finite
output time set T and the sets A and B for the allowed stretch and time-shift
factors, they simulate the system S computing the trajectory (t, x(λ, t)) for all
time points in a set TA,B defined as T ∪ {t′ | t′ = α(t+ τ), t ∈ T, α ∈ A, τ ∈ B}.
The set TA,B contains all time instants in which species values are to be known
in order to evaluate whether parameter λ satisfies Def. 2.

3.2 Parameter Probability Space

The probability distribution over the discretised parameter space Λ̂ used by the
Orchestrator to generate new parameter values to examine is parametric to the
set S of BA parameter values found so far. To speed up the finding of new BA
parameter values (with respect to, e.g., uniform sampling), parameter values
that are close to those in S are most likely to be chosen.

Given a set S, we extract theN values λ1, . . . , λN to examine at each iteration
of the Orchestrator independently as follows. For all i ∈ [1, N ]: 1) We randomly
choose λ′i ∈ S considering a uniform probability distribution over S. 2) We
randomly choose the maximum number hi of components in which λi will differ
from λ′i. In this case, the set [n] is considered distributed as a power-law of the



form Pr[h] = ahi
−b, with b > 1 and a being a normalisation constant. This

implies that, with high probability, λi will differ from λ′i in a small number of
components. 3) We randomly choose a subset Hi of hi different components in
[n], assuming a uniform distribution over the set of subsets of cardinality hi. 4)

Finally, the parameter value λi is such that for all j ∈ Hi λi,j is choosen in Λ̂j
uniformly at random and λi,j = λ′i,j for all j ∈ [n] \Hi.

This sampling technique defines a probability space (Λ̂,P(Λ̂),PrS) paramet-

ric with respect to a set S ⊆ Λ̂. By multiplying the (conditional) probabili-

ties of steps 1)–4) above, we have: PrS [λ] = 1
|S|
∑
λ′∈S a |d(λ, λ′)|−b

(
n

|d(λ,λ′)|
)−1∏

i∈d(λ,λ′)
1
|Λ̂i|

, where d(λ, λ′) is the set of the components on which λ and λ′

differ. Note that PrS [λ] is non-zero for all λ.

3.3 Algorithm Correctness

The guarantee that, upon termination, with high statistical confidence, all BA
parameter values are in S depends only on the fact that the sampling process
consecutively fails N times to find a BA parameter value outside S, and not on
how the set S has been populated in the previous iterations of the algorithm.

Stemming from the above considerations, we show the following theorem,
stating the correctness of our parallel algorithm.

Theorem 1. Given a dynamical system S as in Def. 1, a finite subset Λ̂ of Λ,
a value λ0 ∈ Λ̂, a tuple Θ of biological admissibility thresholds, two real numbers
ε and δ in (0, 1), and two finite sets of real numbers A and B (with 1 ∈ A and
0 ∈ B), our parallel algorithm is such that:

1. it terminates;
2. upon termination, it computes a set S ⊆ Λ̂ of Θ-Biologically Admissible

parameter values;
3. with confidence 1− δ: PrS [{λ ∈ Λ̂ \ S | admA,B(λ0, λ,Θ)}] < ε. �

4 Experimental Results

The computational effectiveness of our distributed multi-core implementation
has been evaluated on the GynCycle model [39]. Such a model has 114 parame-
ters, 75 of which are patient-specific (at least for our purposes), and consists of
41 differential equations defining the time evolution of 33 species.

We implemented our tool in the C programming language using Message
Passing Interface (MPI) [42] to enable the communication between the Orches-
trator and BA Verifiers spread on multiple machines connected by a network.

4.1 Experimental setting

Experiments have been carried out on a cluster of 7 Linux heterogeneous ma-
chines: 1 machine equipped with 2 × Intel(R) Xeon(R), 2.83 GHz and 8GB of
RAM (category A), 2 machines equipped with 2 × Intel(R) Xeon(R), 2.66 GHz
and 8GB of RAM (cat. B), and 4 machines equipped with 2 × Intel(R) Xeon(R),
2.27 GHz and 16GB of RAM (cat. C). We used a maximum number of 81 CPU



cores (7 out of the 8 available cores for machines of categories A and B and 15
out of the 16 available cores for machines of cat. C). The single Orchestrator
process was always run on a core of the machine in cat. A.

We set both ε and δ to 10−3. The stretch factor α (see Def. 2 in Sect. 2.2)
ranges in the set A = {0.90, 0.95, 1.00, 1.05, 1.10}, while the set B for the shift
factor τ (see Def. 2 in Sect. 2.2) consists of all values from−3 to 3 days multiple of

6 hours. The discretisation Λ̂ of Λ has been obtained by uniformly discretising the
range of each parameter into 5 values. We set Limex to compute time evolutions
for all species over h = 90 days, returning values with a time step of 15 minutes.
Integrals for cross-correlation and norms have been computed numerically with
a time step of 15 minutes.

In [47], suitable values for the biological admissibility thresholds θ1, θ2, θ3
have been considered, in order to largely cover the set of model meaningful bi-
ological behaviours. Here we are interested in evaluating the speedup and the
efficiency of our distributed multi-core algorithm. To this end, in order to exe-
cute multiple experiments in reasonable time, we set the biological admissibility
thresholds θ1, θ2, θ3 to, respectively, 0.99, 0.01, 0.01. Such values are way overly
restrictive from a biological point of view, and allow us to compute only a tiny
fraction (only 8 parameter values) of the set of the BA parameters shown in [47]
(which consists of several thousands of Biologically Admissible (BA) parameter
values). Anyway, the overall number of random parameter values generated and
examined in our case (27620) is sufficiently large to let us correctly evaluate the
computational performance of our algorithm.

4.2 Experimental results

Table 1 shows the overall computation time (column “time”) when varying the
number of BA Verifiers (col. “# proc.”) used in parallel by our algorithm. Each
BA Verifier runs on a different core of a machine in our cluster. To make the
different values comparable (given the stochastic nature of our algorithm and
the heterogeneity of our cluster machines), we started all runs using the same
random seed and used the same proportion of machines of each category in all
runs (col. “# cores”). To neutralise biases due to the heterogeneity of our cluster
machines, we determined the computation time of our algorithm when using a
single BA Verifier (sequential time) by carrying out three runs allocating the
(single) BA Verifier on a core of a machine of each category. Such computation
times are listed in Table 2. From such data we have computed the completion
time in the first line of Table 1 by averaging the three sequential execution times,
using the proportion of the number of cores for each machine category as weights.

Column “speedup” in Table 1 shows the speedup achieved by our algorithm.
For each number v of parallel BA Verifiers, the speedup is the ratio tv/t1, where
tv and t1 are the computation times shown in Table 1 when using, respectively,
v and 1 BA Verifiers. Column “eff.” shows the efficiency of our algorithm and is
computed, as typically done in the evaluation of parallel algorithms, by dividing
the speedup by the number of the parallel BA Verifiers used.

From Table 1 we can see that our distributed multi-core implementation
scales well with the number of used parallel BA Verifier instances. The observed
lack of efficiency, mostly due to network delays, is typical in a cluster setting. We



#proc. # cores time speedup eff.

A B C (h:m:s)

1 – – – 238:16:55 1× 100%
26 2 4 20 9:16:57 25.67× 98.73%
52 4 9 39 5:16:25 45.18× 86.88%
80 6 14 60 4:1:12 59.27× 74.09%

Table 1: Computation times

machine cat. for time
the sequential alg. (h:m:s)

A 194:47:45
B 206:19:15
C 250:5:18

Table 2: Sequential time

note that high-performance parallel simulation typically has efficiency values in
the range 40%-80% (e.g., see [36]). Accordingly, an efficiency of 74% (last row
of Table 1) is to be considered state-of-the-art.

5 Conclusions

We presented a parallel algorithm which efficiently computes the set of Biolog-
ically Admissible (BA) parameters for an ODE-based biological model. In our
approach, this is a crucial step to enable fast computation of patient-specific
predictions from clinical trials. The main ingredient of our parallel algorithm is
a novel random sampling process which allows the parallel execution of an arbi-
trarily high number of processes to check their biological admissibility (which is
the most computationally demanding part). Such processes are independent and
communicate only with an orchestrator. Our results show that our distributed
multi-core implementation scales well with the number of available cores.
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