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Abstract—The goal of System Level Formal Verification is to
show system correctness notwithstanding uncontrollable events
(disturbances), as for example faults, variation in system parame-
ters, external inputs, etc. This may be achieved with an exhaustive
Hardware In the Loop Simulation based approach, by considering
all relevant scenarios in the System Under Verification (SUV)
operational environment.

In this paper, we present SyLVaaS, a Web-based tool enabling
Verification as a Service (VaaS). SyLVaaS implements an assume-
guarantee approach to the verification problem outlined above.

SyLVaaS takes as input a high-level model defining the SUV
operational environment and computes, using parallel algorithms
deployed in a cluster infrastructure, a set of highly optimised
simulation campaigns, which can be executed in an embarrassingly
parallel fashion on a set of Simulink instances, using a platform
independent Simulink driver downloadable from the SyLVaaS
Web site.

As the actual simulation is carried out at the user premises
(e.g., in a private cluster), SyLVaaS allows full Intellectual
Property protection on the SUV model and the user verification
flow.

The simulation campaigns computed by SyLVaaS randomise
the verification order of operational scenarios and this enables,
at anytime during the parallel simulation activity, the estimation
of the completion time and the computation of an upper bound
to the Omission Probability, i.e., the probability that there is
a yet-to-be-simulated operational scenario which violates the
property under verification. This information supports graceful
degradation in the verification activity.

We show effectiveness of the SyLVaaS algorithms and infras-
tructure by evaluating the system on industry-scale input related
to the verification of the Fuel Control System (FCS) model in the
Simulink distribution.

I. INTRODUCTION

Cyber-Physical Systems (CPSs) consist of hardware and
software components and can be modelled as hybrid systems
(see, e.g., [1] and citations thereof). System Level Verification
of CPSs has the goal of verifying that the whole (i.e., software
+ hardware) system meets the given specifications.

Model checkers for hybrid systems cannot handle System
Level Formal Verification (SLFV) of actual CPSs. Thus,
Hardware In the Loop Simulation (HILS) is currently the
main workhorse for system level verification and is sup-
ported by Model Based Design tools like Simulink (http:
//www.mathworks.com) and VisSim (http://www.vissim.com).
In HILS, the actual software reads/sends values from/to math-
ematical models (simulation) of the physical systems (e.g.,
engines, analog circuits, etc.) it will be interacting with.

A. Motivations
System Level Formal Verification (SLFV) is an exhaustive

HILS, where all relevant simulation scenarios are considered.

In [2], [3], [4] a methodology has been presented which allows
exhaustive HILS. Such methodology works as follows.

The System Under Verification (SUV) is a Hybrid System
(see, e.g., [1] and citations thereof) whose inputs belong to
a finite set of uncontrollable events (disturbances), which
model failures in sensors or actuators, variations in the system
parameters, etc. The SUV is a deterministic system (the typical
case for control systems). Nondeterministic behaviours (such
as faults) are modelled with disturbances. Also, sequences of
inputs to the SUV are of bounded length, thus the problem
addressed is bounded SLFV. Accordingly, in [2], [3], [4], a
simulation scenario is a finite sequence of disturbances. A
system is expected to withstand all disturbance sequences that
may arise in its operational environment. Correctness of a
system (defined in terms of safety properties) is thus defined
with respect to such admissible disturbance sequences.

Given a high-level model defining the admissible distur-
bance sequences (disturbance model), the approach in [2], [3],
[4]: (i) generates the entire set of such sequences, (ii) evenly
splits such set into k ∈ N+ slices in order to allow parallel
verification, (iii) computes (in parallel) an optimised simulation
campaign from each slice, (iv) executes (in parallel) the
generated simulation campaigns on a set of k independent
simulators (e.g. Simulink instances).

There, a simulation campaign is a sequence of simula-
tion instructions, which exploits the capabilities of moderns
simulators to save and restore previously stored simulation
states (much as in explicit model checking). In particular, a
simulation campaign consists of the following commands: save
a simulation state, restore a saved simulation state, inject a
disturbance, advance the simulation for a given time length.

As soon as one of the simulators (running the simulation
campaign corresponding to a slice) finds an error, the whole
parallel simulation activity stops, and the disturbance trace
which triggered the error is returned as a counterexample.
Also, as the generated optimised simulation campaigns (one
per slice) randomise the verification order of the traces in the
input slice, at anytime during the parallel simulation activity
it is possible to compute an upper bound to the Omission
Probability (OP), i.e., the probability that an error exists, but no
error has been found so far and give a quite accurate estimation
of the completion time.

Algorithms for all the activities above have been presented
in [2], [3], [4]. However, an off-the-shelf tool to effectively
support companies working in the CPS business in their
everyday SUV verification activities was not available. To
provide such a tool is exactly the purpose of this paper.

B. Main Contributions
We present SyLVaaS (see Fig. 1), a Web-based service

computing the set of simulation campaigns to be used for a
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Fig. 1: SyLVaaS VaaS architecture

SLFV task.
SyLVaaS introduces the new Verification as a Service

(VaaS) paradigm, allowing verification engineers (SyLVaaS
users) to compute the simulation campaigns needed to their
SLFV activities keeping both the SUV model and the property
to be verified secret, thus achieving full Intellectual Property
(IP) protection. This is mandatory for a VaaS service to be
effective and usable, as companies consider the design effort
(hence their SUV models) and their verification flow as the
core of their IP.

To enable IP protection, SyLVaaS takes as input only a
disturbance model, in terms of a CMurphi [5] model describing
the admissible operational scenarios the SUV must withstand.
The actual verification activity is performed in parallel at
the user premises (e.g., on a private cluster) running an
arbitrarily large set of Simulink simulators, using the optimised
simulation campaigns computed by SyLVaaS and plugging-in
a Simulink driver downloadable from the SyLVaaS Web site.

In case an error is found during verification, a counterex-
ample is generated. Such a counterexample can then be used
to correct the SUV and to produce a new SUV model. At
this point a new SLFV activity can start. Note that, given
that the set of admissible operational scenarios (hence: the
disturbance model) has not changed, there is no need to
interact with SyLVaaS again, as the previously computed
simulation campaigns can be reused. This property also hides
the verification flow of SyLVaaS users.

The operational scenario generation algorithm in [2] is a
sequential algorithm, taking about half an hour on their case
study. Although this time is negligible with respect to the
whole HILS activity (which can take weeks of computation),
it becomes a major bottleneck in a VaaS context as the one
provided by SyLVaaS, as it is the most intensive part of the
computation carried out on the SyLVaaS side (i.e., generation
of optimised simulation campaigns for parallel HILS, see
Fig. 1, right).

In this paper, to achieve fast response time in SyLVaaS,
we present a new parallel algorithm for the generation of
operational scenarios from a disturbance model, and discuss
its distributed multi-core implementation explicitly designed
as to operate efficiently on a cluster of possibly heterogeneous
machines.

Our new operational scenario generation algorithm consists
of an Orchestrator process which governs the exploration of
the (state space of the finite state automaton defined by the)
disturbance model provided by the user, splitting and delegat-
ing the work to a battery of available Slaves, whose work load
is dynamically balanced. Slave processes are independent from

each other and communicate only with the Orchestrator. This
minimises coordination overhead.

We experiment our new algorithm on two industry-scale
case studies (regarding the Fuel Control System (FCS) in the
Simulink distribution) consisting of, respectively, 4,023,955
and 12,948,712 operational scenarios. Results show that our
new parallel algorithm for operational scenario generation
scales well with the number of Slaves. As the operational
scenario generation is the most computationally intensive
computation within the SyLVaaS workflow, and given that the
other step performed by SyLVaaS (computation of optimised
simulation campaigns) already exploits an embarrassingly par-
allel algorithm (from [3]), with our new parallel disturbance
trace generator the entire SyLVaaS workflow can benefit of a
cluster of machines at the SyLVaaS cloud infrastructure.

C. Related Work
The papers closest to ours are [2], [3], [4], where the

algorithms underlying SyLVaaS workflow are presented. [2],
[3], [4] split the computation of the set of system runs to verify
from the actual execution (by simulation), presenting a parallel
approach to formal verification of the full class of hybrid
systems handled by Simulink. In this paper we complement
such results by focusing on parallelising the most intensive
computation step within the SyLVaaS workflow, namely the
generation of the set of all operational scenarios.

Parallel algorithms for parallel model checking have been
widely investigated. For example: OBDD (Ordered Binary De-
cision Diagrams) based (symbolic) model checking algorithms
are described in [6], [7] and citations thereof; parallel SAT
based algorithms are described in [8] and citations thereof.
Explicit algorithms have been investigated in [9], [10]. Unlike
our approach, none of the above approaches can handle the
full class of hybrid systems handled by Simulink, as we do.

System Verification as a Service (also known as Model
Checking in the Cloud) is still in its infancy. In [11], it is
argued that ideas may be borrowed from workflow modelling,
management and analysis of business process. In [12] a Map-
Reduce algorithm for verification of CTL formulas on a cloud
system is proposed. Moreover, panels to discuss on how to set
up a reliable VaaS tool are ongoing in major conferences [13].
However, none of such works propose an implemented and
available tool, with the features described in Section I-B. We
also point out that “verification as a service” is sometimes used
with a meaning different from the one we use here, i.e., system
verification via Model Checking. Namely, there are companies
offering verification as a service, which however is a consulting
service. Moreover, verification services are available in many
different fields, such as, e.g., identity verification services.
Thus, to the best of our knowledge, SyLVaaS is the first
verification as a service available.

The methodology and the type of verification problems
addressed here are closely related to: HILS-based SLFV (e.g.,
see [14]), statistical model checking (e.g., see [15], [16], [17]),
Monte Carlo model checking methods (e.g., see [18], [19],
[20]), formal verification of Simulink models (e.g., see [21],
[22]), synergies between simulation and formal methods (e.g.,
see [23], [24]), parallel algorithms for explicit state exploration
(e.g., see [25], [9], [26], [27]), and hybridisation of explicit
and symbolic methods for automatic synthesis of controllers
for discrete time linear hybrid systems [28], [29], [30], [31],
[32], [33], [34], [35]. We refer the reader to [2], [3], [4] for a
comparison with such works.
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Fig. 2: (a) A discrete event sequence (d = 3); (b) Our SUV
embedding a monitor; (c) The SUV monitor output.

II. BACKGROUND

In this section we give some background notions. Unless
otherwise stated, all definitions are based on [36], [2], [3], [4]
to which we refer the reader for more in-depth details.

In the following, we denote with R, R≥0, R+ and N+ the
sets of, respectively, all real, non-negative real, strictly positive
real, and strictly positive natural numbers, and with Bool =
{0, 1} the set of Boolean values (where 0 means ‘false’ and 1
means ‘true’).

A. Modelling the SUV
A System Under Verification (SUV) is modelled as a

Discrete Event System (DES), namely a continuous time
Input-State-Output deterministic dynamical system [36] whose
inputs are discrete event sequences. A discrete event sequence
is a function u(t) associating to each (continuous) time in-
stant t ∈ R+ a disturbance event (or, simply, disturbance).
Disturbances, encoded by integers in the interval [0, d] (for a
given d ∈ N+), represent uncontrollable events (e.g., faults).
We use event 0 to represent the event carrying no disturbance.
As no system can withstand an infinite number of disturbances
within a finite time, we require that, in any time interval of
finite length, a discrete event sequence u(t) differs from 0 only
in a finite number of time points (Fig. 2a).

B. Modelling the Property to be Verified
The property to be verified is modelled as a continuous time

monitor embedded in the SUV (see Fig. 2(b)), which observes
the state of the system and checks whether the property
under verification is satisfied. The output of the monitor (see
Fig. 2(c)) is 0 as long as the property under verification is
satisfied and becomes and stays 1 (sustain) as soon as the
property fails, thus ensuring that we never miss a property
failure report, even when sampling the monitor output only at
discrete time points. The use of monitors gives us a flexible
approach to model the property to be verified. In particular, it is
easy to model bounded safety and bounded liveness properties
as monitors.

C. Modelling the SUV Operational Environment
System level verification follows an Assume-Guarantee

approach aimed at showing that the SUV meets its specifica-
tion (Guarantee) as long as the SUV operational environment
behaves as expected (Assume). As we focus on bounded
system level verification, we model (Definition 2) the SUV
operational environment as the sequence of disturbances our
SUV is expected to withstand within a finite time horizon.
We also bound the time quantum between two consecutive
disturbances.

As it is typically infeasible to define the SUV operational
environment by explicitly listing all the admissible disturbance
traces, we define it by means of a disturbance model, which
is in turn defined as the language accepted by a suitable au-
tomaton, called Disturbance Generator (DG) (see Definition 1
and Fig. 3(a–c)).
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Fig. 3: (a) Disturbance model; (b) Disturbance generator;
(c) Generated sequence of disturbance traces (d = 3, h = 6);
(d) The discrete event sequence associated to the trace in the
black rectangle in part (c), given time quantum τ .

Definition 1 (Disturbance generator): A DG is a tuple
D = (Z, d, dist, adm, ZI , ZF ) where:
• Z is a finite set of states;
• ZI ⊆ Z and ZF ⊆ Z are the set of, respectively, initial

and final states;
• d ∈ N+ defines the set of disturbance events represented

(without loss of generality) with integers in [0, d], where value
0 represents the event carrying no disturbance;
• dist : Z × [0, d] → Z is a (deterministic transition)

function mapping each state/disturbance pair (z, e) to a next
state dist(z, e);
• adm : Z × [0, d] → Bool is a (guard) function defining

(the characteristic function of ) the set of disturbances admis-
sible (i.e., that may occur) in a given state. �

Note that we model simultaneous disturbances as one
single event (i.e., one disturbance).

Definition 2 defines disturbance traces (simulation scenar-
ios) as paths from initial to final states in a DG.

Definition 2 (Disturbance trace): Let
D = (Z, d, dist, adm, ZI , ZF ) be a DG.

(a) A disturbance path of length h for D is a computation
path in D with h disturbances (transitions). Formally, it is a
sequence z0, d0, z1, d1, . . . , zh−1, dh−1, zh, where z0 ∈ ZI ,
zh ∈ ZF and, for all 0 ≤ i < h, zi ∈ Z, di ∈ [0, d],
adm(zi, di) = 1, and zi+1 = dist(zi, di).

(b) A disturbance trace of length h for D is a sequence
δ = d0, . . . , dh−1 of h disturbances such that there exists a
disturbance path z0, d0, z1, d1, . . . , zh−1, dh−1, zh for D. We
denote with δ(j) the j-th disturbance occurring in trace δ (0 ≤
j < h). �

Given τ ∈ R+ (time quantum), to a disturbance trace δ
for D we can univocally associate a discrete event sequence
uτδ , defined as follows: for all t ∈ R≥0, if there exists j ∈
[0, h − 1] such that t = τj then uτδ (t) = δ(j), else uτδ (t) = 0
(no disturbance).

Thus a disturbance trace δ defines an operational scenario
(namely, uτδ ) for our SUV. Figure 3d shows the discrete event
sequence associated to a disturbance trace. We represent our
SUV operational environment as a finite set of disturbance
traces ∆ = {δ0, . . . , δn−1} for D, since Uτ∆ = {uτδ0 , . . . ,
uτδn−1

} (for a given τ ∈ R+) defines the operational scenarios
our SUV should withstand. Note that, by taking h large enough
(as in Bounded Model Checking (BMC)) and τ small enough
(to faithfully model our SUV operational scenarios), we can
achieve any desired precision. On such considerations rests the
effectiveness of the approach.

D. System Level Formal Verification
Definition 3 formalises our bounded System Level Formal

Verification problem.



Definition 3: A System Level Formal Verification (SLFV)
problem is a tuple (H,D, τ, h) where: H is a DES with an
embedded monitor modelling our SUV, D is a DG modelling
a set of disturbance traces ∆ over horizon h ∈ N+, and τ ∈ R+

is a time quantum.
The answer to SLFV problem is FAIL if there exists a

disturbance trace δ in ∆ such that the SUV monitor output at
time τh is 1, when H is given uτδ (the discrete event sequence
associated to δ given time quantum τ ) as input, and PASS
otherwise. In case of FAIL , the disturbance trace raising the
error is returned as a counterexample. �

Note that, notwithstanding the fact that the number of states
of our SUV is infinite and we are in a continuous time setting,
to answer a SLFV problem we only need to check a finite
number of disturbance traces. This is because we are bounding:
(a) our time horizon to T = τh, and (b) the set of time points
at which disturbances can take place, by taking τ as the time
quantum among disturbance events.

E. Parallel HILS based anytime random exhaustive SLFV
Along the lines of [2], [3], [4], we follow a black-box

parallel approach to SLFV, where the DES H defining our
SUV (plus the property to be verified) is defined using the
modelling language of a suitable simulator (namely, MatLab
and Stateflow for Simulink). We compute the answer to a
SLFV problem (H,D, τ, h) by simulating each disturbance
trace δ in the operational environment ∆, thus performing
an exhaustive (with respect to ∆) Hardware In the Loop
Simulation (HILS).

In order to enable parallel simulation over k ∈ N+

machines available in the (private) user cluster, we evenly
partition (along the lines of [2]) the sequence of disturbance
traces ∆ into k ∈ N+ sequences of disturbance traces ∆0,
. . . , ∆k−1. We then use such k slices to compute, in parallel
on the SyLVaaS cluster, k highly optimised simulation cam-
paigns, which can be executed in parallel using k independent
simulators, each one running (on a different core of the user
cluster) a model for H. The answer to the SLFV problem is
FAIL if one of the simulation campaigns raises the simulator
output function to 1 (in this case the disturbance trace δ which
raised the error is returned as a counterexample). The answer
is PASS otherwise.

Each simulator accepts four basic commands: store, load,
free, run. Command store(l) stores in memory the current state
of the simulator and labels with l such a state. Command
load(l) loads into the simulator the stored state labelled with l.
Command free(l) removes from the memory the state labelled
with l. Command run(e, t) (with e ∈ [0, d] and t ∈ R+)
injects disturbance e and then advances the simulation of time
t. A simulation campaign is thus a sequence of simulator
commands.

Using commands store and load we can avoid revisiting
simulation states (much as in explicit model checking). Using
command free we can remove from the memory states that
will never be needed in the remaining part of the simulation
campaign. This is needed since each state may require many
KB of memory (150–300 KB in the case study presented in
this paper).

Also, as each computed simulation campaign verifies the
disturbance traces in the input slice in a random order, it is
possible to compute at anytime during the simulation process
(along the lines of [3]), an estimation of the simulation

const h : 7; A : 1; B : 2;
var -- global variables
t : 1 .. h + 1; -- time
d : array [A .. B] of 0 .. h;

-- disturbance times
startstate begin t := 1;
d[A] := 0; d[B] := 0; end;

rule "ok" t <= h ==> t := t + 1;
rule "A fails" t <= h & d[A] = 0 &
(d[B] = 0 | (t-d[B] > 2)) ==>
begin d[A] := t; t := t + 1; end;

-- dual rule for B omitted
finalstate (t = h + 1);

Fig. 4: CMurphi code for the DG described in Example 1

completion time and an upper bound to the Omission Prob-
ability (OP), i.e., the probability that there is a yet-to-be-
simulated disturbance trace which violates the property under
verification. This information enables the verification engineer
to evaluate if it is worth to continue the simulation activity,
or instead stop it since the degree of assurance attained can
be considered adequate for the application at hand (graceful
degradation).

III. SYSTEM LEVEL FORMAL VERIFICATION AS A
SERVICE

In this section, we describe SyLVaaS in terms of input and
output, and describe how to use the system output.

A. Input
SyLVaaS requires two inputs:
(1) an integer k > 0 describing the number of computa-

tional cores available on the user side for parallel execution of
simulation campaigns (hence, for parallel verification);

(2) a disturbance model defining the operational environ-
ment, i.e., the set of disturbance traces the System Under
Verification (SUV) should withstand, along with a bounded
horizon h.

As it is typically infeasible for a verification engineer to
define a SUV operational environment by explicitly listing
all its disturbance traces, SyLVaaS, along the lines of [2],
takes as input a disturbance model defining a Disturbance
Generator (DG) written in the high-level language accepted
by the CMurphi [5] model checker. The following example
clarifies this point.

Example 1: Assume that a SyLVaaS user wants to verify
a SUV with two sensors, A and B, which may fail (without
repair) at times multiple of 1 second. Fault of any sensor
might occur only if the other one did not fail, or failed more
than 2 seconds before. The CMurphi description for the DG
modelling such operational scenario is shown in Fig. 4, where
the verification time horizon is 7 seconds. �

B. Output
From the value of k and the input disturbance model,

SyLVaaS produces k simulation campaigns, which can be
executed in parallel on the user premises over k independent
simulators, in an embarrassing parallel fashion.

Each simulation campaign verifies, in a highly optimised
way, a disjoint and equally-sized portion of the disturbance
traces entailed by the input disturbance model. Conversely,
all disturbance traces entailed by the disturbance model are
covered by exactly one simulation campaign. This guarantees
that the System Level Formal Verification (SLFV) process is
both exhaustive (with respect to the set of disturbance traces
entailed by the disturbance model) and non-redundant.



Also, the verification order of the disturbance traces cov-
ered by each simulation campaign is randomised. This, ac-
cording to [3] enables the computation of an upper bound to
the Omission Probability (OP) at anytime during the parallel
simulation.

The k simulation campaigns are returned to the user via
the Web interface, together with an abstract Simulink driver.
Such a driver is a MATLAB script which reads and executes
a SyLVaaS-generated simulation campaign, by sending simu-
lation commands to Simulink. It is “abstract” as it must be
plugged into the SUV Simulink model and configured at the
user premises (see Fig. 1 and Section III-D).

C. Web Interface
The Web interface of SyLVaaS is hosted at http://mclab.

di.uniroma1.it/sylvaas. It consists of four main pages: (i) a
standard login page, (ii) a user console page (accessible after
login) showing all current, pending, running and completed
user jobs, (iii) a page to create a new job (providing the
required input) (iv) a tools page, where the generic driver can
be downloaded. Users can download the simulation campaigns
for each completed job from their console page.

D. How to Use SyLVaaS Output
Given the output downloaded by SyLVaaS, the verification

engineer, in order to actually verify the SUV via exhaustive
Hardware In the Loop Simulation (HILS), customises and
plugs the abstract Simulink driver into the SUV Simulink
model. This task is very easy and consists in properly filling
the template files received by SyLVaaS as part of the abstract
driver. Such files define: the SUV model, the SUV property to
be verified (as a monitor module), the interface between the
driver and the SUV, and the mapping between each disturbance
(in the CMurphi disturbance model) and its counterpart in the
SUV model.

At this point, the k downloaded simulation campaigns can
be executed in parallel on k independent simulators. Given
the randomisation of the verification order of the disturbance
traces within each simulation campaign, at anytime during the
simulation process, when ratios done1, done2, . . . , donek (with
donei ∈ [0, 1] for all i) of the traces covered by each simulation
campaign have been verified successfully (i.e., no error has
been raised so far), the Omission Probability (OP), i.e, the
probability that a future simulation command raises an error,
is upper bounded by [3]: 1−mini∈[1,k] (donei) .

IV. PARALLEL GENERATION OF DISTURBANCE TRACES

As reported in [2], the most computationally intensive step
of the workflow for the generation of simulation campaigns is
disturbance trace generation starting from the user disturbance
model. This task is performed in [2] using a modified version
of the CMurphi model checker. As reported there, on a distur-
bance model entailing 4 million traces, trace generation takes
about 30 minutes, while the subsequent step (i.e, computation
of simulation campaigns) takes about 1 minute, as it can be
massively parallelised [4]. The time to generate disturbance
traces is anyway negligible if we consider also the time to
carry out (in parallel) the actual simulation, which may take
days.

However, in a Verification as a Service (VaaS) context
as that of SyLVaaS, the simulation campaigns are actually
executed at the user premises, and disturbance trace generation
from the user disturbance model would become by far the most
time-dominant step in the SyLVaaS workflow.
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To this end, to achieve fast response time in SyLVaaS,
here we present a new parallel algorithm for distributed
trace generation. As a result, with this new algorithm the
whole SyLVaaS workflow (i.e., trace generation and optimised
simulation campaigns computation) can now take benefit from
the availability of a cluster in the SyLVaaS cloud infrastructure
(see Fig. 5).

A. Algorithm overview
Our new parallel algorithm for trace generation has been

explicitly designed as to operate efficiently on a cluster of
possibly heterogeneous machines, and consists on a single
Orchestrator process and a number S ∈ N+ of Slaves. The
Orchestrator governs the exploration of the state space of the
Disturbance Generator (DG) defined by the disturbance model
provided by the user, splitting and delegating the work to the
Slaves. To avoid communication as well as data structures
shared among the Slaves, the DG state space is regarded as a
set of trees, one for each DG initial state. This does not pose
any termination problem, as we are looking for disturbance
traces of bounded length h.

The Orchestrator performs a Depth-First Search (DFS) up
to bounded level (depth) L < h and delegates the exploration
of the subtrees rooted at each node at depth L to an idle slave,
see Fig. 6. The exploration of each subtree by a slave s ∈ [1, S]
is again carried out by DFS, and is called a computation bunch.
Each computation bunch b gives as output a sequence of traces
∆b (stored in a file), containing a subset of the disturbance
traces entailed by the model. The sets ∆b of traces produced
by all computation bunches b form a partition of the entire set
of admissible disturbance traces ∆.

The simplicity of the algorithm minimises network com-
munication and coordination among processes. In particular,
Slave processes are independent from each other and commu-
nicate only with the Orchestrator. Also, computation bunches
delegated to the Slaves are short, hence load balancing can
be performed by the Orchestrator simply by assigning more
computation bunches to the faster Slaves.

B. Distributed trace labelling
Both the Orchestrator and the Slaves work in DFS mode,

and hence each computation bunch b produces a sequence ∆b

of disturbance traces in lexicographic order. Each disturbance
trace prefix identifies a simulator state. To allow generation and
optimisation of simulation campaigns, we associate a unique
label to each such prefixes (Definition 4).



Definition 4 (Labelling of disturbance traces): Let D be a
DG defining d ∈ N+ disturbances, and Λ be a countably
infinite set of labels. A labelling function over [0, d] is an
injective map λ from finite sequences of values in [0, d]
(including the empty sequence) to labels in Λ.

Let δ = d0, . . . , dh−1 be a disturbance trace for D. The la-
belling of δ (according to λ) is δλ = l0, d0, . . . , lh−1, dh−1, lh
where, for all 0 ≤ i ≤ h, li = λ(d0, . . . , di−1). �

As a consequence of Definition 4, prefixes of disturbance
sequences (d̂0, . . . , d̂p−1) common to multiple disturbance
traces are followed by the same label l̂p = λ(d̂0, . . . , d̂p−1).
Labels identifying common disturbance prefixes are essential
in the efficient computation of highly optimised simulation
campaigns, as they represent the only simulator states which
might be worth storing, as they may be needed later (see the
optimiser in [3]). Note that, given that both the Orchestrator
and the Slaves run in DFS mode, disturbance traces can be
labelled at no additional computational cost during generation.
In particular, the Orchestrator labels trace prefixes up to level
L, while slaves label trace prefixes longer than L.

Our parallel algorithm uses the following labelling schema,
which results in an overall injective map λ for disturbance pre-
fix labels while avoiding communication among the processes.
Let S ∈ N+ be the number of available slaves. We set Λ = N+.
The Orchestrator associates, to each new disturbance prefix, a
label extracted from the set {l | l ∈ N+, l = j(S+ 1) + 1, j ≥
0}, according to their natural order. Analogously, each slave
s ∈ [1, S] associates, to each new disturbance prefix, a label
extracted from the set {l | l ∈ N+, l = j(S+1)+s+1, j ≥ 0},
So, for example, if S = 2, the Orchestrator uses labels from
the set {1, 4, 7, . . .}, Slave 1 uses labels from {2, 5, 8, . . .}, and
Slave 2 uses labels from {3, 6, 9, . . .}. Note that these sets of
labels are disjoint, hence resulting in a overall injective map.

C. Orchestrator
The Orchestrator process, whose pseudocode is shown as

Algorithm 1, governs the exploration of the DG state space, by
performing a DFS up to a bounded depth (level) L < h, also
assigning unique labels (see variable λ) to disturbance trace
prefixes. When level L is reached, the Orchestrator delegates
the exploration of the subtree rooted at the current state to an
idle slave, forwarding to it the (labelled) prefix δλ (containing
exactly L disturbances) of the disturbance trace computed so
far. Each such delegated task (computation bunch) is assigned
a sequential id (see variable b). As the exploration is done by
the Orchestrator using DFS, the disturbance sequences passed
to the Slaves (δ) are generated in lexicographic order.

D. Slaves
Slave processes follow Algorithm 2. Each Slave waits for

an Orchestrator request to perform a computation bunch. Each
such request consists in tuple (z0, b, δ

λ), where z0 ∈ ZI is
one of the initial states of D, b is the computation bunch id,
and δλ is a labelled prefix of disturbance traces (containing L
disturbances), as computed by the Orchestrator.

Upon reception of (z0, b, δ
λ), a slave s ∈ S: (i) reaches the

root of the subtree which is in charge to explore by following
δλ, (ii) starts its own DFS from there, hence limiting its
attention to that subtree.

Admissible (complete) disturbance traces found (which
have δλ as a prefix) are appended to the output file ∆s of
slave s and annotated with the id b of the current computation

1 function Orchestrator(D, h, L, S)
Input: D = (Z, d, dist, adm, ZI , ZF ), a DG
Input: h, bounded length for disturbance traces
Input: L, level of the search tree below which exploration

is delegated to slaves
Input: S, number of available slaves

2 λ← 1; // next label to be used
3 b← 1; // id of the next comp. bunch
4 let δλ be an array of variables l0, d0, l1, d1, . . . , lL;
5 foreach z0 ∈ ZI do
6 stack← {(z0, 0)}; l0 ← λ; λ← λ+ S + 1;
7 while stack is not empty do
8 (z, d̂)← top(stack);
9 if d̂ ≤ d then

10 top(stack)← (z, d̂+ 1); j ← |stack| − 1;
11 if adm(z, d̂) then
12 dj ← d̂; lj+1 ← λ; λ← λ+ S + 1;
13 if j < L then push(stack, (dist(z, d̂), 0));
14 else

// delegate computation bunch
15 wait for an idle slave s;
16 send (z0, b, δ

λ) to slave s;
17 b++;
18 else pop(stack);
19 wait until all slaves become idle

Algorithm 1: Orchestrator

bunch. During exploration, each slave also carries out trace
labelling using its own (disjoint) set of labels (see variable λ).

E. Algorithm Correctness
Theorem 1 shows correctness of our algorithm (proof

omitted for lack of space):
Theorem 1: Let D be a DG, h, S ∈ N+, and λ be a

labelling function according to Definition 4. Let ∆ be the entire
set of disturbance traces for D with horizon h, and let ∆s be
the (ordered) sequence of disturbance traces generated by slave
process s ∈ S of our algorithm. The following holds:

(a) (∆1, . . . ,∆S) form a partition of ∆ (when ignoring
the trace order within each ∆s and the annotations regarding
the computation bunch ids);

(b) for all s ∈ S, disturbance traces in ∆s are lexicograph-
ically ordered (when ignoring their associated computation
bunch ids);

(c) for all s, s′ ∈ S and for all b, b′ ∈ [1, B] such that
b < b′, each trace in ∆s generated during (hence annotated
with) computation bunch b is lexicographically less than all
traces in ∆s′ generated during (hence annotated with) b′. �

Theorem 1 shows that, from ∆1, . . . ,∆S , we can eas-
ily produce k ∈ N+ lexicographically ordered slices
(slice1, . . . , slicek) of the same length (where k ∈ N+ is the
number of parallel cores available at the user side for parallel
simulation), as required by [3].

Once the k slices have been produced, they are indepen-
dently given to k instances of the optimiser of [3], which are re-
sponsible to generate k output simulation campaigns for them,
also randomising the trace verification order. This enables
Omission Probability (OP) computation at anytime during the
simulation activity at the user premises (see Section II) as well
as completion time estimation. As already shown in [3], the
generation of the k simulation campaigns can be scheduled
on all the cores available to SyLVaaS in an embarrassingly
parallel fashion.



1 function Slave(D, h, L, S, s)
Input: D = (Z, d, dist, adm, ZI , ZF ), a DG
Input: h, bounded length for disturbance traces
Input: L, level of the search tree below which exploration

is delegated to slaves
Input: S, number of available slaves
Input: s ∈ [1, S], id of this slave

2 λ← s+ 1; // next label to be used
3 while true do

// slave is idle
4 wait for a message (z0, b, δ

λ) from Orchestrator;
// δλ = l0, d0, l1, d1, . . . , lL

5 let δ̃λ be an array of variables l̃0, d̃0, l̃1, d̃1, . . . , l̃h;
// start computation bunch b

6 stack← empty stack; ∆b ← empty sequence;
7 z ← z0;

// follow δλ to reach root of req.
subtree & copy it into δ̃λ

8 for j ← 0 to L− 1 do
9 l̃j ← lj ; d̃j ← dj ; z ← dist(z, d̃j);

10 l̃L ← lL;
// start DFS from there

11 push(stack, (z, 0));
12 while stack is not empty do
13 (z, d̂)← top(stack);
14 if d̂ ≤ d then
15 top(stack)← (z, d̂+ 1); j ← L− 1 + |stack|;
16 if adm(z, d̂) then
17 d̃j ← d̂; l̃j+1 ← λ; λ← λ+ S + 1;
18 if j < h then push(stack, (dist(z, d̂), 0));
19 else if z ∈ ZF then append (b, δ̃λ) to ∆s;
20 else pop(stack);

Algorithm 2: Slave

V. EXPERIMENTS

In this section we experimentally evaluate SyLVaaS, and in
particular our new parallel disturbance generation algorithm of
Section IV and the cloud deployment of the overall Verification
as a Service (VaaS) infrastructure.

A. SyLVaaS Experimental Deployment
We deployed SyLVaaS on overall 17 computational cores

allocated to 5 different machines. One core (on a machine
equipped with 2 Intel Xeon 2.83GHz CPUs and 8GB RAM)
is dedicated to Orchestrator processes, while 16 cores evenly
distributed in 4 identical machines (each one equipped with
2 Intel Xeon 2.27GHz CPUs and 24GB RAM) are dedicated
to Slave processes. The SyLVaaS web interface application
resides on a yet another host (a tiny virtual machine), external
to the cluster and directly connected to the Internet.

B. Case Study
We use the same case study of [15], [2], [3], [4], i.e., the

Fuel Control System (FCS) model included in the Simulink
distribution. The FCS has three sensors subject to faults
(disturbances).

We used two disturbance models for the FCS, D1 and D2.
Model D1 (described in more detail in [2]) has a horizon of
h = 100 and defines 4,023,955 disturbance traces. Model D2 is
defined extending D1 with more complex operational scenarios
and defines 12,948,712 disturbance traces over a horizon of
h = 200. A detailed description of D1 and D2 (not relevant for
the evaluation of our experiments below) can be downloaded
from the SyLVaaS Web site.

#slaves
(S)

disturbance model D1 disturbance model D2

time (h:m:s) speedup efficiency time (h:m:s) speedup efficiency

1 0:32:32 1.00× 100.00% 4:45:47 1.00× 100.00%
8 0:5:32 5.88× 73.50% 0:43:2 6.64× 83.00%
16 0:3:11 10.22× 63.88% 0:26:16 10.88× 68.00%

TABLE I: Results on parallel generation of disturbance traces

#slices (k) D1 (h:m:s) D2 (h:m:s)

128 0:4:1 0:8:7
256 0:4:32 0:11:25
512 0:4:52 0:13:17

TABLE II: Results on slicing of disturbance traces

C. Experimental Results
1) Parallel Disturbance Trace Generation: Table I shows

the time needed by SyLVaaS to generate the disturbance
traces entailed by D1 (4,023,955 traces) and D2 (12,948,712
traces), when using a varying number S of parallel slaves. The
level (depth) L to which the Orchestrator bounds its search
and triggers a Slave has been fixed at h/2 after preliminary
experiments. This value seems to be quite stable among various
models. Intuitively, a lower value for L typically makes compu-
tation bunches (performed by Slaves) too long, hindering load-
balancing. A greater value for L typically makes the (single)
Orchestrator carry out too much work. In both cases the overall
generation time is longer. The number of computation bunches
executed by the algorithm is 477,727 for disturbance model D1

and 1,681,594 for D2.
For each value for S, Table I reports the overall time

for generating the whole set of disturbance traces for both
disturbance models (columns “time”), as well as speedup and
efficiency with respect to the execution time of the sequential
algorithm (the first row in Table I referring to S = 1).

As usual in the evaluation of parallel algorithms, for each
value of S, the speedup is defined as t1/tS , where t1 and
tS are, respectively, the execution times of our disturbance
trace generation algorithm when using 1 (sequential algorithm)
and S parallel slaves. For each value of S, the efficiency is
computed as the ratio between the speedup and S.

2) Disturbance Trace Slicing: Table II shows the time
needed by SyLVaaS to compute k slices from the disturbance
traces generated using S = 16 slaves from disturbance models
D1 and D2, for various values of k, which denotes the number
of computational cores available at the user side for parallel
simulation. To ease comparison of our results with those in
[3], we used the same values of k as those used in that paper.

3) SyLVaaS Complete Workflow: Table III reports the time
needed to compute (in parallel) the k simulation campaigns
(column “sim. campaign comp. time”) and the overall SyLVaaS
response time (summing up trace generation, splitting, and
simulation campaign optimisation times, column “overall
time”), for each disturbance model (D1 or D2) and each value
for k. Results in Table III have been obtained using S = 16
slaves during trace generation and 16 cores to compute the k
simulation campaigns (thus, on average, each core computed
k/16 campaigns).

4) Download of Simulation Campaigns: SyLVaaS stores
simulation campaigns computed as above in .zip archives
which are then downloaded by the user. In our experiments,
the size of such files is in the order of a few hundreds of
MB. Hence, their download into the user cluster can be done
seamlessly over a standard broad-band Internet connection.



disturbance model D1 disturbance model D2

#slices
(k)

sim. campaign
comp. time (h:m:s)

overall time
(h:m:s)

sim. campaign
comp. time (h:m:s)

overall time
(h:m:s)

128 0:1:44 0:8:56 0:4:1 0:38:24
256 0:0:42 0:8:25 0:2:27 0:40:8
512 0:0:13 0:8:16 0:0:24 0:39:57

TABLE III: Results on the entire SyLVaaS workflow

VI. CONCLUSIONS

We have presented SyLVaaS, a Web-based software-as-a-
service tool for HILS-based System Level Formal Verification
(SLFV). Such a tool allows verification engineers to obtain
from a Web service the most important part of their HILS
campaigns, i.e. a set of simulation campaigns to exercise
the System Under Verification (SUV) on all the relevant
operational scenarios (disturbance traces).

As the simulation campaigns are executed at the user
premises, SyLVaaS provides full Intellectual Property (IP)
protection for both the SUV model, the property to be verified,
and the user verification flow. The simulation may be carried
out in parallel on a user cluster whose machines have Simulink
installed.

To achieve a short response time and increase the quality
of service provided by SyLVaaS, we also proposed a new
algorithm to parallelise the most computationally intensive part
of the SyLVaaS workflow, i.e., the generation of disturbance
traces. As the other step performed by SyLVaaS (computation
of optimised simulation campaigns) already exploits an embar-
rassingly parallel algorithm, with our new parallel disturbance
trace generator the entire SyLVaaS workflow can benefit of a
cluster of machines at the SyLVaaS cloud infrastructure.

To the best of our knowledge, SyLVaaS is the first Web-
based software-as-a-service tool for HILS-based SLFV.
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