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Abstract—One of the main goals of systems biology models
in a health-care context is to individualise models in order to
compute patient-specific predictions for the time evolution of
species (e.g., hormones) concentrations. In this paper we present
a statistical model checking based approach that, given an inter-
patient model and a few clinical measurements, computes a value
for the model parameter vector (model individualisation) that,
with high confidence, is a global minimum for the function
evaluating the mismatch between the model predictions and
the available measurements. We evaluate effectiveness of the
proposed approach by presenting experimental results on using
the GynCycle model (describing the feedback mechanisms regu-
lating a number of reproductive hormones) to compute patient-
specific predictions for the time evolution of blood concentrations
of E2 (Estradiol), P4 (Progesterone), FSH (Follicle-Stimulating
Hormone) and LH (Luteinizing Hormone) after a certain number
of clinical measurements.

I. INTRODUCTION

Systems biology models aim at providing quantitative
information about time evolution of biological species. De-
pending on the system at hand, many modelling approaches
are currently investigated. For example, see [21], [19] for
an overview on discrete as well as continuous modelling
approaches, and [43] for a survey on stochastic modelling
approaches. In this paper we focus on biological networks
modelled with a system of Ordinary Differential Equations
(ODEs) depending on a set of parameters as in, e.g., [33],
[44], [36].

A. Motivations
One of the main goals of systems biology models in

a health-care context is to individualise models in order to
compute patient-specific predictions (see, e.g., [23]) for the
time evolution of species of interest (e.g., hormones). In our
setting, this can be done by assigning suitable values to the
model parameters.

Biological models typically depend on many (easily hun-
dreds of) parameters, whose values cannot be chosen arbitrarily
because of inter-dependency constraints among them (see, e.g.,
[25]). If model parameter values are chosen ignoring such
constraints, then the resulting model behaviour is biologically
meaningless. Unfortunately, such constraints are usually not
explicitly known and thus are not modelled.

Model identification (see, e.g., [26]) techniques are typi-
cally used to estimate model parameters by minimising mis-
match with respect to experimental data. In our setting, model
identification is typically accomplished by computing a value
for the model parameter vector (parameter estimation) so that
a suitable error function measuring mismatch between model

predictions and experimental data is minimised. If such a value
exists and is unique the model (as well as its parameter vector
univocally defining the model [26]) is said identifiable.

Model identification techniques require availability of
many measurements (see, e.g., [7]). This is difficult to achieve
in a scientific trial, let alone in a clinical setting. For example,
model identification for our GynCycle case study has been
done in [36] (with the approach described in [9]) using a
Pfizer database comprising 20–25 measures for each of the
4 observed hormones for 12 healthy women. This amounts to
more than 1000 overall measurements. This is a typical state
of affairs: in order to gather enough experimental data, model
identification is carried out using measurements from several
patients. This leads to the computation of a value (default
value) for the model parameters that averages among the
behaviours of many patients (see, e.g., [7], [36]). As a result,
although in principle model identification techniques could be
used to compute patient-specific model parameters, in practice,
because of the large amount of measurements needed, they are
typically used to compute inter-patient model parameters.

In a clinical setting, for each patient, only a few (say, 3)
measurements are available, since measurements can be costly,
invasive and time-consuming. This is far from the hundreds
of measurements used in model identification. Furthermore,
a fast response time is needed, since decisions resting upon
our patient-specific predictions must be taken within a time
compatible with the health problem being addressed.

The above considerations motivate investigation on meth-
ods and tools that can support model individualisation in a
clinical setting where measurements are at a premium and a
fast response time is needed.

B. Main contributions
We present a statistical model checking based approach

that given an ODE based model for a biological system and a
few clinical measurements for a patient, computes a patient-
specific model. This enables patient-specific predictions for the
time evolution of each species of interest.

As discussed in Section I-A, the above cannot be done
using model identification approaches, since we do not have
enough measurements available to attain identifiability. Pa-
rameter estimation approaches cannot be used either, since
with such a few data they would not take into due considera-
tion inter-dependencies among model parameters [25], thereby
leading to biologically meaningless model behaviours.

We overcome such an obstacle as well as that of getting
a fast on-line response time, by splitting our computation
into two phases. First, an off-line phase that accounts for



parameter inter-dependencies [25] and narrows our search
space to vectors of parameter values leading to biologically
meaningful model behaviours. Second, an on-line phase that
computes a patient-specific model by selecting a vector of
parameter values in our search space. Our contributions can
be summarised as follows.

Formalisation of biological admissibility: In general, to
decide if time evolution of species concentration is biologically
meaningful takes a domain expert. However, our goal is to
build a general purpose tool that can automatically search
through millions of model parameter values. Thus, we need
a criterion to automatically filter out (most of) the parameter
values leading to time evolutions that are not biologically
meaningful. We provide such a criterion by defining, as
Biologically Admissible (BA) parameter values, those entailing
time evolution with a second order statistics close enough to
that of the model default parameter values.

Off-line computation of all Biologically Admissible (BA)
parameters: Our goal is to compute a set of BA values for
the model parameters that encompasses as many biologically
meaningful behaviours as possible, but at the same time is not
too large, in order to speed up our on-line computation. Thus,
taking into account that differences in values below a certain
threshold are meaningless from a biological point of view, we
discretise the range of values for each model parameter. In
such a framework, we present a statistical model checking
based algorithm that computes a set S containing only and
(with arbitrarily high confidence) all BA values for our model
parameters. Note that such an algorithm does not depend on
patient-specific data. Thus it can be run once and for all off-line
and its output (the set S) can be stored for further processing.

On-line computation of patient-specific predictions: Given
the set S computed by our off-line algorithm above and patient-
specific clinical measurements, we compute a parameter λ∗
that globally minimises the mismatch between species concen-
trations computed using parameter λ∗ and those actually mea-
sured from the patient. Simulating our model with parameter
λ∗ yields the patient-specific predictions we are looking for.
Note that, by looking at such predictions, a domain expert can
easily disregard them (and thus λ∗) if they are not biologically
meaningful. Thus, returning BA parameter values that do not
yield biologically meaningful time evolutions is harmless, but
returning too many of them makes our tool useless. Thanks to
the off-line pre-computation of the set S, our on-line algorithm
has a fast response time and allows us to compute a patient-
specific model from very few (say, 3) patient measurements.

Experimental evaluation: We evaluate effectiveness of our
approach by presenting experimental results on using it on the
GynCycle model in [36]. The computation time of our off-
line algorithm (computing set S above) ranges from about a
week to more than a month, depending on the thresholds used
to check biological admissibility of model parameters and on
the degree of confidence required (0.999 in our case). Starting
from the set S above and from clinical measurements for E2,
P4, FSH and LH, our on-line algorithm computes in a matter
of minutes patient-specific predictions for the concentrations
of all 33 species in the model (that is, also for those for
which no clinical measurements are available). Our results
show that: 1) most patient-specific predictions stemming from
our computed BA model parameters in S are biologically
meaningful (soundness); 2) most of the measurements in our
data sets (from Pfizer database logs, [36]) can be reproduced
by selecting a suitable parameter in S (completeness); 3) the

average error of our patient-specific predictions with respect to
experimental data is smaller that the one yielded by predictions
based on the default model parameter.

C. Overview of the paper

Biological systems as dynamical systems: We model (Sec-
tion II) a biological system with a system of ODEs defining
a dynamical system (see, e.g., [37]) whose state variables
comprise species concentration and whose outputs are the
species that we can actually measure. Our approach is black-
box. Accordingly we use a solver (namely, Limex [11]) to
compute a solution to the ODEs modelling our system.

Biologically Admissible (BA) model parameters: Sec-
tion III gives our notion of biological admissibility. First, we
note that a biological model is equipped with a default value λ0

for the (vector of the) model parameters. Such a default value is
provided by the model authors and summarises the biological
behaviour of many patients (inter-patient model). We say that
a model parameter λ is BA if the model behaviours that λ
entails are highly correlated (in a signal processing sense,
[41]) to the model behaviours entailed by the model default
parameter λ0. Our approach can be easily generalised to
account for models which define multiple different admissible
behaviours (modelling, e.g., both healthy patients and patients
with different pathologies) by providing a set Λ0 of default
parameters (one per behaviour class) and by considering as
BA any λ entailing a model behaviour highly correlated to the
behaviour entailed by at least one default parameter λ0 ∈ Λ0.
In this paper, for simplicity of presentation, we focus on
models equipped with a single default parameter (as it happens
in the GynCycle model).

Patient Logs and Parameter Fitness: Section IV describes
how we model patient data (clinical records or just logs) and
our measure of fitness. Given a patient log L and a model
parameter λ, we define the error η(L, λ) as the mismatch
between the species concentrations computed from our model
using parameter λ and those in log L.

Off-line computation of the set of BA parameters: Along
the lines of [16], we use statistical hypothesis testing to
compute off-line, with high statistical confidence, the set S of
BA values for the model parameters. To this end, Section V
first defines our sampling space and our sampling strategy.
Our sampling space is the set Λ̂ of discretised values for the
model parameters. Our off-line algorithm initialises S to the
singleton set {λ0} containing only the default parameter, and
then samples Λ̂ adding all found BA parameter values to S
until S stays stable for long enough. Upon termination, we
are guaranteed that, with high statistical confidence, all BA
parameter values are in S.

Individualising a Biological Model: Section VI gives our
main algorithm that computes, with arbitrarily high statistical
confidence, a BA parameter value λ∗ which globally minimises
error η(L, λ) when λ is constrained to take BA values. Our
algorithm consists of two phases: an off-line phase computing,
as outlined above, the set S of BA parameter values, followed
by an on-line phase, computing a value λ∗ such that η(L, λ∗)
attains its global minimum in S. The off-line phase is compu-
tationally quite heavy. However it has to be run only once and
does not depend on the patient-specific data in L. The on-line
phase is our fast response time algorithm (since S is usually
quite small) to be deployed in a clinical setting.



Experimental results: Section VII describes our case study,
namely the GynCycle model described in [36], and presents
experimental results evaluating effectiveness of our approach.

D. Related work

The input to our off-line algorithm consists of a system
model along with the default value for its parameters. The
GynCycle model considered in our case study has been
presented in [36] and the default value for its parameters has
been computed in [9] using model identification (often referred
to as parameter identification in our setting) techniques [26].

A key feature of parameter identification approaches is
their ability to give information about parameter identifiability
(see, e.g., [7] and citations thereof). For example, the param-
eter identification approach in [9] provides information about
parameter identifiability. Gradient-based methods, as, e.g., the
classical one in [24], provide a local optimum solution to
the parameter estimation problem, without giving any infor-
mation about parameter identifiability. Global methods, such
as [27], provide a global optimum solution without any in-
formation about parameter identifiability. Heuristic approaches
as evolutionary algorithms (see, e.g., [5], [40]), provide near-
global optimal solutions without information about parameter
identifiability. When observations are scarce, parameters usu-
ally become non-identifiable. Studying the correlation among
system parameters can reduce the number of data needed
for identifiability (see, e.g., [34], [25]). Our goal here is to
support model individualisation from clinical measurements.
This means that we need to compute model parameters from
a few (say, 3) observations about a small subset (4 in our case
study) of the species occurring in the model (33 in our case).
Unfortunately, as discussed in Section I-A, because of scarcity
of measurements, neither model identification approaches nor
parameter estimation approaches can be used in our setting.

Model checking based parameter estimation approaches
have been investigated for example in [18], [10], [35], [20].
Such approaches differ from ours, since they do not address the
problem of automatically restricting the search to parameters
leading to biologically meaningful model trajectories. This is
a fundamental step in complex models as ours.

The works closest to ours are those in [38], [6] and citations
thereof, where the problem of computing all (discretised)
model parameter values meeting given LTL properties has
been investigated. We extend such works in two directions.
First, the above mentioned papers focus on piecewise affine
ODE systems, whereas we can handle any (possibly) non-
linear ODE system (as is the case for our GynCycle model
[36]). Second, the above mentioned papers aim at computing
a maximal set of parameters satisfying a given LTL property
describing the typical behaviour for the biological system at
hand. Thus, when the model changes, a new LTL property has
to be provided by domain experts. Our approach infers such a
system property by the default value for the model parameters
using the notion of biological admissibility of Section III. This
decreases the amount of input needed from domain experts,
thereby alleviating one of the main problems in such a frame-
work: formalising the properties that biologically meaningful
system trajectories must satisfy.

We note that computing the set of all model parameter
values that satisfy a given property is closely related to that
of computing all control strategies satisfying a given property.
In a discrete time setting this problem has been addressed, for

piecewise affine systems and safety properties, in [30], [2], [1],
[31], [4], [3], [32], [8].

Model checking techniques have been widely used in
systems biology, in order to verify time behaviours. Examples
are in [22], [17], [12], [14], [33]. Such approaches focus on
verifying a given property for the model trajectories, whereas
our main problem here is to compute all biologically plausible
values for the model parameters.

II. PARAMETRIC DYNAMICAL SYSTEMS

We model biological systems using dynamical systems
(see, e.g., [37]). In this section we give the formal background
on which our approach rests. Throughout the paper, we denote
with [n] the set {1, 2, . . . , n} of the first n natural numbers
and with R+, R≥0 and R the sets of, respectively, positive,
non-negative and all real numbers. We also denote with
(R≥0 × R≥0)∗ the set of pairs (a, b) ∈ R≥0 × R≥0 such that
a ≥ b.

Definition 1 (Parametric Dynamical System): A Paramet-
ric Dynamical System (or, simply, a Dynamical System) S is
a tuple (X ,Y,Λ, ϕ, ψ), where:

• X = X1 × . . .×Xn is a non-empty set of states, called
the state space of S;

• Y = Y1 × . . .× Yp is a non-empty set of outputs, called
the output value space;

• Λ is a non-empty set of parameters, called the parameter
value space;

• ψ : R≥0 ×X → Y is the observation function of S;
• ϕ : (R≥0 × R≥0)∗ × X × Λ → X is the transition map

of S. Intuitively, ϕ(t2, t1, x, λ) is the state reached by the
system (with parameter values λ) at time t2 starting from
the state x ∈ X at time t1 ≤ t2. Function ϕ must satisfy
the following properties:

◦ semigroup: for each t1, t2, t3 ∈ R≥0 such that t1 <
t2 < t3, for each λ ∈ Λ, we have that ϕ(t3, t1, x, λ) =
ϕ(t3, t2, ϕ(t2, t1, x, λ), λ);

◦ consistency: for each t ∈ R≥0, x ∈ X and λ ∈ Λ, we
have ϕ(t, t, x, λ) = x.

Remark 1: Usually, a dynamical system comes equipped
with a function space U that models both controllable in-
puts (e.g., treatments) as well as uncontrollable inputs (dis-
turbances). In this paper, we do not address treatments or
disturbances. Accordingly, for sake of simplicity, we omit
inputs from Definition 1.

Remark 2: To simplify notation, unless otherwise stated,
we assume that the set of parameters Λ has the form X × Γ
(where Γ is a non-empty set). Therefore, a parameter λ =
(x0, γ) ∈ Λ embodies information about the initial state x0 of a
system trajectory. Such a system trajectory is a function of time
x(λ)(t), which, for each t ∈ R≥0, evaluates to ϕ(t, 0, x0, γ).
In the following, abusing notation as usual, we write x(λ, t)
instead of x(λ)(t). Analogously, we write xi(λ, t) [yi(λ, t)] for
the time evolution xi(λ)(t) [yi(λ)(t)] of the ith state [output]
component with parameters γ starting in x0 from time 0.

Example 1: Dynamical systems whose dynamics is de-
scribed by a system of Ordinary Differential Equations (ODEs)
depending on parameters are currently of great interest as a
mathematical model for biological networks (see, e.g., [13],
[36]). In this paper, we will use as a case study the Gyn-
Cycle model presented in [36]. It is a differential equation



model for the feedback mechanisms between Gonadotropin-
Releasing Hormone (GnRH), Follicle-Stimulating Hormone
(FSH), Luteinizing Hormone (LH), development of follicles
and corpus luteum, and the production of Estradiol (E2),
Progesterone (P4), Inhibin A (IhA), and Inhibin B (IhB) during
the female menstrual cycle. The model aims at predicting
blood concentrations of LH, FSH, E2, and P4 during different
stages of the menstrual cycle. The model is intended as a tool
to help in preparing and monitoring clinical trials with new
drugs that affect GnRH receptors (quantitative and systems
pharmacology). To get simulations of hormone concentrations,
the system of differential equations is solved numerically.

In our black-box approach, the system transition map
models our call to a solver (namely, Limex [11]) computing
a solution to the ODEs defining dynamical systems in our
context. This is along the lines of simulation based system
level formal verification as in [42], [28], [29].

III. BIOLOGICAL ADMISSIBILITY

In general, given a value λ for the (vector of) model
parameters, it takes a domain expert to decide if it holds that
for each species xi in the model, the time evolution xi(λ, t)
is biologically meaningful. This stems from the fact that many
parameter values lead to time evolutions for the model species
that are not compatible with the laws of biology. However,
our goal is to build a general purpose tool that automatically
searches through millions of model parameter values. Thus,
we need a criterion to automatically filter out parameter values
leading to time evolutions that are not biologically meaningful.
We provide such a criterion by asking that the time evolution
of x(λ, t) is similar enough (modulo bounded stretch and/or
time-shifts) to that of x(λ0, t), that is the one entailed by the
model default parameter value λ0. To this end, in the following
definition, we consider three measures of how similar two
trajectories are (modulo bounded stretch and/or time-shift).

Given a function f from R to R and α, τ ∈ R, we denote
with fα,τ the function defined by fα,τ (t) = f(α(t + τ))
for all t. Here, α and τ are used to model, respectively, a
stretch and a shift of f . Given two functions f and g from R
to R, the cross-correlation (see, e.g., [41]) 〈f, g〉(ξ) between
f and g is a function of ξ (where ξ ∈ R is the time lag)
defined as: 〈f, g〉(ξ) =

∫ +∞
−∞ f(t)g(t + ξ)dt. We consider the

normalised zero-lag cross-correlation function ρf,g , defined as
ρf,g = 〈f,g〉(0)

‖f‖‖g‖ , where ‖f‖ and ‖g‖ are the L2 norms of f and
g, i.e.,

√
〈f, f〉(0) and

√
〈g, g〉(0). The higher ρf,g the more

similar are f and g (e.g., f and g have the same peaks). In
particular, ρf,g is 1 if f is equal to g up to an amplification
factor.

Given a dynamical system S with n state variables, two
parameter values λ, λ0 for S, and a finite horizon h ∈ R≥0,
let xi(λ0, t) and xi(λ, t) be the time evolutions of species xi
(for each i ∈ [n]) under parameters λ0 and λ respectively.
Being time evolutions, both xi(λ0, t) and xi(λ, t) are defined
for 0 ≤ t ≤ h. Anyway, to easily match the above general
definition of cross-correlation, we define such functions on the
whole set of real numbers, as being 0 for any t < 0 or t > h.

In order to model biological admissibility, we define the
following three functions (i ranges over [n], α, τ ∈ R):

1) normalised zero-lag cross-correlation:

ρλ0,λ,i(α, τ) = ρxi(λ0),xα,τi (λ)

2) normalised average differences:

µλ0,λ,i(α, τ) =

∣∣∣∣∣
∫ h

0
(xi(λ0, t)− xα,τi (λ, t))dt∫ h

0
xi(λ0, t)dt

∣∣∣∣∣
3) normalised squared norm differences:

χλ0,λ,i(α) =
∣∣(‖xi(λ0)‖2 − ‖xα,τi (λ)‖2)

∣∣ / ‖xi(λ0)‖2.

The normalised zero-lag cross-correlation ρλ0,λ,i(α, τ)
measures the similarity of the trajectories xi(λ0, t) and xi(λ, t)
as for qualitative aspects (for example, if they have the same
peaks), when xi(λ, t) is subject to stretch α and time-shift τ .
Analogously, the normalised average differences µλ0,λ,i(α, τ)
and the normalised squared norm differences χλ0,λ,i(α, τ) are
two measures of the average distance between xi(λ0, t) and
xi(λ, t), when xi(λ, t) is subject to stretch α and time-shift τ .

In the following, we use these functions to formalise the
notion of Biologically Admissible (BA) parameter λ with
respect to a default parameter λ0. Intuitively, Definition 2
considers λ as BA if the three measures above are all above
or below certain thresholds.

Definition 2 (Biologically Admissible parameter): Let λ0,
λ ∈ X × Λ be two parameters. Let A ⊆ R+, B ⊆ R be two
sets of real numbers such that 1 ∈ A and 0 ∈ B. Given a
tuple Θ = (θ1, θ2, θ3) of positive real numbers, we say that
λ is Θ-biologically admissible with respect to λ0, notation
admA,B(λ0, λ,Θ), if there exist α ∈ A and τ ∈ B such that,
for all i ∈ [n]: (ρλ0,λ,i(α, τ) ≥ θ1) ∧ (µλ0,λ,i(α, τ) ≤ θ2) ∧
(χλ0,λ,i(α, τ) ≤ θ3).

IV. PATIENT LOGS AND PARAMETER FITNESS

In order to evaluate model predictions with respect to
clinical records, we first formally define the notion of system
log. System logs model experimental results that we get by
taking system measurements. A system log consists of a
sequence of time instants for each output under consideration,
and, for each time instant, the corresponding measured value.
This definition is motivated by the fact that, in clinical practice,
different species may be measured in different time instants.

Definition 3 (System log): Let S be a dynamical system as
in Definition 1, and Y = Y1 × . . . × Yp be its p-component
output value space.

An output time set T for S is the Cartesian product T1 ×
. . .× Tp, where each Ti is a finite subset (possibly empty) of
R≥0. A T -output log is a map from T to Y .

A system log L for S is a pair (T, z), where T is an output
time set for S, and z is a T -output log.

Example 2: As an example of system log, here we briefly
describe a typical patient log for monitoring women menstrual
cycle (see Example 1) that we use in our case study. Logs
from 12 women from a Pfizer database considered in [36]
contain measurements regarding only four hormones: Estradiol
(E2), Progesterone (P4), Follicle-Stimulating Hormone (FSH),
and Luteinizing Hormone (LH). These hormone concentrations
are measured mostly every day from day 5 to day 28 of the
menstrual cycle. In such a case, we have TE2 = TP4 =
TFSH = TLH = {5, 6, 7, . . . , 28} (time here is in days). In
everyday clinical practice, even a smaller set of measurements
is taken. For example, in clinical treatments of fertility, only
three to five blood samples (measurements) are performed
during a cycle and some hormone concentrations are measured
only twice. As an instance, the output time set for Estradiol
could be TE2 = {1, 7, 9, 12, 23} and the output time set for
Progesterone could be TP4 = {1, 6}.



To evaluate how well a model prediction fits a system log,
we consider an error function η(S,L, λ), which is a real-
valued map that measures to what extent predictions computed
with the model S with parameter λ differ from measurements
in the patient log L. When the system S under consideration
is clear from the context, we will write just η(L, λ) for
η(S,L, λ).

In our case study, we consider the GynCycle model as in
Example 1 and a system log L = (T, z) as in Example 2.
Our error function is defined as the average (over the p = 4
measured species) of the average error of model predictions
[yi(λ, t)] with respect to all measurements in the patient log
[zi(t)]: η(L, λ) = 1

p

∑
i∈[p]

1
|Ti|
∑
t∈Ti

|yi(λ,t)−zi(t)|
max{|zi(t)|,ζ} . Note

that, as we need to average the errors for different species,
we need normalised error functions. To this end, we consider
the log observations as reference values (relative error), and to
avoid abnormal situations, if an observation is 0, we normalise
it with respect to a given small positive constant ζ. An
alternative option would have been to normalise the error with
respect to the length of the range of legal values for each
species. Unfortunately, this option is unviable in our context,
as the range of legal values for many (unobservable) species
is unknown.

V. COMPUTATION OF ADMISSIBLE PARAMETERS

The first phase of our procedure finds the set S of (with
high confidence) all Biologically Admissible (BA) parameter
values with respect to a default parameter λ0 validated by
the model designer as biologically meaningful. The set S
is computed by checking parameter values in a finite (grid-
shaped) subset Λ̂ of Λ (discretised parameter space). This
approach is justified by the fact that small differences in values
are meaningless from a biological point of view.

Since the number of parameters to identify is large (75 in
our case study), the discretised parameter space is huge (1075

if we consider 10 possible values for each parameter), thus
making an exhaustive search on the discretised parameter space
Λ̂ unfeasible. To overcome such an obstruction, we follow an
approach inspired by statistical model checking [16], [15].

A. Algorithm Outline
Algorithm 1 incrementally computes the set S of Biologi-

cally Admissible (BA) parameter values trying to find at each
iteration of the repeat loop (lines 5–13) new BA parameter
values. To do so, Algorithm 1 iteratively selects a random
parameter value λ ∈ Λ̂ (line 8), tests if it is BA (i.e., if
admA,B(λ0, λ,Θ) holds) and, if this is the case, adds it to the
set S of already computed BA parameter values (lines 10–11).

To check admA,B(λ0, λ,Θ) we compute the functions de-
fined in Section III by numerical integration over a finite
number of points. To do this, we invoke the simulator just once
for any parameter value λ: given the requested output time set
T and the sets A and B for the allowed stretch and time-
shift factors, function simulate(S, TA,B, λ) in line 9 simulates
the system S computing points (t, x(λ, t)) of the system
trajectory for all time points in TA,B. Set TA,B (line 4) contains
all time instants for which function admA,B needs species
values in order to evaluate whether parameter λ satisfies
Definition 2. Function simulate(S, TA,B, λ) returns as a result
a finite domain function L, such that, for any time instant
t ∈ TA,B, Li(t) is the value of species xi at time t.

Our sampling strategy selects a parameter value λ from
Λ̂\S with probability PrS [λ] > 0. To speed up our procedure,

we give a higher probability to parameter values “close” to
those already in S (see Section V-C).

Algorithm 1 Computing the set S of BA parameters

Input: A dynamical system S = (X ,Y,Λ, ϕ, ψ), a finite subset Λ̂
of Λ, a default parameter λ0, two real numbers ε, δ ∈ (0, 1), a
tuple Θ of BA thresholds, two finite sets of real numbers A and
B (with 1 ∈ A and 0 ∈ B), and an output time set T

function bioAdmPars(S, Λ̂, λ0, ε, δ,Θ,A,B, T )
1. N ← dln(δ)/ ln(1− ε)e
2. S′ = {λ0}
3. L0 ←simulate(S, T, λ0)
4. TA,B ← T ∪ {t′ | t′ = α(t+ τ), t ∈ T, α ∈ A, τ ∈ B}
5. repeat
6. S ← S′

7. for i← 1 to N do
8. λ←chooseNextParameter(Λ̂, S)
9. L←simulate(S, TA,B, λ)

10. if admA,B(L,L0,Θ) ∧ λ 6∈ S then
11. S′ ← S′ ∪ {λ}
12. break
13. until S′ = S
14. return S

We use Statistical Hypothesis Testing to compute S, much
along the lines of [16]. Let δ and ε be two real numbers in
(0, 1) and N = d ln(δ)

ln(1−ε)e. The algorithm stops when N at-
tempts fail to find a BA parameter. Our null hypothesis H0(S)
states that the probability of selecting a BA parameter value
outside S is greater than ε. In other words, H0(S) states that S
does not contain all BA parameter values. Upon termination,
the algorithm rejects H0 with statistical confidence 1−δ. This
means that the probability of a Type-I error (i.e., to reject H0

when it holds) is less than 1− δ. Rejecting H0 means that the
probability of selecting a BA parameter value outside S ⊆ Λ̂
is less than ε.

B. Algorithm Correctness
The above considerations are the key argument to prove

the following.
Theorem 1: Given a dynamical system S as in Defini-

tion 1, a finite subset Λ̂ of Λ, a value λ0 ∈ Λ̂, a tuple Θ
of biological admissibility thresholds, two real numbers ε and
δ in (0, 1), and two finite sets of real numbers A and B (with
1 ∈ A and 0 ∈ B), Algorithm 1 is such that:

1) it terminates in O(N |Λ̂|) steps, where N = d ln δ
ln(1−ε)e;

2) upon termination, it computes a set S ⊆ Λ̂ of Θ-
Biologically Admissible parameter values;

3) set S is such that, with confidence 1 − δ: PrS [{λ ∈
Λ̂ \ S | admA,B(λ0, λ,Θ)}] < ε.

The computational complexity of Algorithm 1 depends on
the fact that, in order to find a BA parameter, we make at
worst N attempts and, in principle, all discretised parameter
values can be BA. As a consequence, the worst running time
of Algorithm 1 is worse than an exhaustive search over Λ̂. We
remark, however, that the average running time is, in general,
much better than that of an exhaustive search, since the set
of BA parameters is very small compared with the size of
the whole discretised parameter space. As a matter of fact, the
algorithm stops with high probability in a reasonable time (see
Section VII-B) by failing to find a new BA parameter value.



C. Parameter Probability Space
The probability distribution that we consider over the

parameter space Λ̂ is parametric to the set S of BA parameter
values computed so far, and it is defined in such a way that
parameter values that are close to values in S are most likely
to be chosen. This speeds up (with respect to, e.g., uniform
sampling) the finding of new BA parameter values.

Given a set S, we choose the next value λ to examine as
follows:

1) We randomly choose λ′ ∈ S uniformly at random.
2) We randomly choose the maximum number h of com-

ponents in which λ will differ from λ′. In this case, the
set [n] is considered distributed as a power-law of the form
Pr[h] = ah−b, with b > 1 and a being a normalisation
constant. This implies that, with high probability, λ will differ
from λ′ in a small number of components.

3) We randomly choose a subset of h different components
in [n], assuming a uniform distribution over the set of subsets
of cardinality h, Ph([n]), that is {X ⊆ [n] | |X| = h}.

4) For each component i, we choose a value λi ∈ Λ̂i
uniformly at random.

This sampling technique defines a probability
space (Λ̂,P(Λ̂),PrS) parametric with respect to
a set S ⊆ Λ̂. By multiplying the (conditional)
probabilities of steps 1)–4) above, we have: PrS [λ] =
1
|S|
∑
λ′∈S a |d(λ, λ′)|−b

(
n

|d(λ,λ′)|
)−1∏

i∈d(λ,λ′)
1
|Λ̂i|

, where
d(λ, λ′) is the set of the components on which λ and λ′

differ. Note that PrS [λ] is non-zero for all λ.

VI. COMPUTATION OF PATIENT-SPECIFIC PARAMETERS

Once the set S of (almost) all Biologically Admissible
(BA) parameters has been computed by the off-line procedure
described in Section V, patient-specific parameters can be
efficiently computed. Given a patient log L, the patient-specific
parameter for L is the parameter λ∗ that minimises η(L, λ),
that is the parameter that minimises model prediction errors
with respect to the patient measurements in L.

Since S contains with arbitrary high confidence all BA pa-
rameters, we just compute the value λ∗ =argminλ∈Sη(S,L, λ)
to get, with the same confidence, a BA parameter value λ∗ that
minimises η(λ,L) over Λ̂. This procedure is intended to be an
on-line computation to be used in everyday clinical practice.

Theorem 2: Let S be the set of BA parameters computed
by Algorithm 1 taking as input a dynamical system S, a tuple
Θ of biological admissibility thresholds, a finite subset Λ̂ of
the parameter space Λ, a default parameter value λ0 ∈ Λ̂, a
probability threshold ε, a confidence level δ, and finite sets A
and B. Given a patient log L = (T, z), the parameter value
λ∗ =argminλ∈Sη(S,L, λ) is such that, with confidence (1−δ),
PrS [{λ ∈ Λ̂ \ S | η(L, λ) < η(L, λ∗)}] < ε.

Remark 3: Once the off-line set S of (almost) all BA
parameters has been computed (once and for all), the com-
putation of λ∗ =argminλ∈Sη(L, λ) is linear in the size of S,
which in turn is very small with respect to Λ̂.

VII. EXPERIMENTAL RESULTS

The effectiveness of our approach has been evaluated on the
GynCycle model in [36]. Such a model has 114 parameters,
75 of which are patient-specific (at least for our purposes),

and consists of 41 differential equations defining the time
evolution of 33 species. We implemented our tool in the C
programming language and connected it with the Limex solver
[11] integrating the Ordinary Differential Equations (ODEs)
defining our model.

A. Experimental setting
All experiments have been carried out on a cluster of Linux

machines each one equipped with two Intel(R) Xeon(R) CPU
@ 2.27GHz and 24GB of RAM.

We set the probability threshold ε and the confidence level
δ to 10−3. Set A (see Definition 2 in Section III) comprises
all stretch factors α multiple of 0.1, from 0.9 to 1.1. Set B
(see Definition 2 in Section III) comprises all time-shifts τ
multiple of 2 hours, from −5 days to +5 days. We set constant
ζ (see Section IV) to 10−4 to avoid division by zero during
normalisation. The discretisation Λ̂ of Λ has been obtained
by uniformly discretising the range of each parameter into 10
or 3 values. Cross-correlations, averages and L2 norms are
computed on a discretisation of the time evolutions with values
every 15 minutes. As for the individualisation of our model we
used the very same Pfizer data in [36] about 12 women.

B. Experimental results
1) Off-line computation of admissible parameters: Table I

shows the computation time and the size of the set S of
computed Biologically Admissible (BA) parameters for dif-
ferent runs of our off-line algorithm, using different config-
urations for biological admissibility thresholds θ1, θ2, θ3 (see
Section III).

run id θ1 θ2 θ3 discr. steps |S| CPU time

r1 0.6 0.5 0.5 10 3940 ∼ 31 days
r2 0.6 0.4 0.4 10 3504 ∼ 29 days
r3 0.5 0.7 0.7 10 6989 ∼ 147 days
r4 0.5 0.5 0.5 10 6406 ∼ 167 day
r5 0.7 0.3 0.3 3 126 ∼ 6 days

TABLE I: Off-line: Size of the set of BA parameters and
computation time.

Parts of such runs have been executed with a parallel
version of our algorithm, which is still under development.
Other parts have been executed with our stable sequential algo-
rithm. In order to allow comparisons, we ensure homogeneity
by reporting in Table I all times as if we were running our
sequential algorithm. Data in Table I should be read with some
caution since, being generated by a probabilistic algorithm
implementing the sampling process described in Section V,
different runs may yield different results as for computation
time and size of set S.

As we can see from Table I, the off-line computation may
take several days of intensive computation. On the other hand,
it only has to be run once, since it does not depend on the
patient log being considered. The RAM usage is negligible and
the disk storage requirements are perfectly reasonable (tens of
GB) for today standards.

2) On-line computation of patient-specific parameters: To
evaluate the improvement that we obtain in species predictions,
we consider patient p2 in the Pfizer data set and its associated
log L2. The average error η(λ0,L2) obtained by using the
default parameter λ0 is 61.9%.

Table II shows results when only three observations (at
days 8, 11, and 15 of the patient menstrual cycle) are used to
compute our predictions for patient p2.
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Fig. 1: (a), (b), (d), (e): all system trajectories under admissible parameters, as computed in run r3 for, respectively, E2, P4,
FSH, LH (dark blue curves denote trajectories under default parameter). (c), (f): patient-specific prediction (green curves) for
patient p2 vs. default prediction (blue curves) for, respectively, E2 and FSH.

run id CPU time avg. error error red. error red.% biol. meaningful

r1 8m35s 56.0% 5.9 9.5% yes
r2 5m06s 55.7% 6.1 9.9% yes
r3 39m20s 55.0% 6.9 11.2% yes
r4 36m5s 55.4% 6.5 10.5% yes
r5 0m23s 61.9% 0.0 0.0% yes

TABLE II: On-line: Error reduction using λ∗ for patient p2.

The table shows CPU time and effectiveness of our on-
line algorithm, when run with the same configurations for
biological admissibility thresholds θ1, θ2, θ3 as in Table I.
Column “average error” gives the minimum value of η(λ,L2)
for λ ∈ S, where S is the set of BA parameters computed
by the off-line algorithm (as shown in the corresponding
rows of Table I). Column “error reduction” shows the value
of (η(λ0,L2)− η(λ,L2)) /η(λ0,L2). Column “biologically
meaningful” shows always “yes”, as all trajectories we found
are biologically meaningful, even though we cannot ensure a
priori that all BA parameters will yield biologically meaningful
trajectories.

Results show that the on-line computation completes within
minutes, thereby yielding a fast on-line response time as re-
quired in a clinical setting. Runs r3 and r4 have been executed
on a machine with an external storage device: their longer
computation times are due to slower I/O. RAM requirements
are negligible.

C. Discussion
1) Experimental soundness and completeness of biologi-

cal admissibility: We experimentally evaluate soundness and
completeness of our notion of biological admissibility, using
reference values from the literature (e.g., [39]). To this end,
Figures 1a, 1b, 1d and 1e show the trajectories for hormones
E2, P4, FSH and LH (for which measurements are available
in our Pfizer data-set) obtained by running the GynCycle
model on all parameter values computed by our off-line
algorithm in run r3. We see that most of such trajectories

are biologically meaningful, being in agreement with the
trajectories in [39]. This shows (experimentally) soundness
of our biological admissibility notion. Furthermore, most of
our Pfizer measurement data (red crosses in Figures 1a, 1b,
1d and 1e) lie within the region covered by our trajectories.
This shows (experimentally) completeness of our biological
admissibility notion.

An example of biologically not meaningful trajectory is
denoted with (∗) in Figure 1d. Also, Figure 1a shows that not
all Pfizer data are covered by our trajectories. This state of
affairs is to be expected, since both biological admissibility
and our off-line algorithm are based on statistical notions
(signal second order statistics and statistical model checking,
respectively), and clinical measurements might be noisy.

2) Error reduction in patient-specific predictions: The er-
ror reductions reported in Table II show that our proposed
approach enables effective patient-specific predictions even in
a clinical setting, where the measurements are at a premium
(we used only three observations). Figures 1c and 1f give
an example of the predictions of, respectively, E2 (Estradiol)
and FSH for patient p2, and compare them with the default
predictions and actual measurements in the patient log. The
achieved error reduction is of about 10%. This value has a
relevant impact from a clinical standpoint, as it can move
hormone peaks (which are among the main fertility/infertility
indicators) by several days (see Figures 1a, 1b, 1d and 1e).

The lack of error reduction shown in the single case where
the minimum cross-correlation is 0.7 is due to the fact that the
only BA parameters found by our off-line algorithm are very
close to the default parameter. On the other hand, the first row
of Table I is more liberal in considering parameters as BA. As
a result, that process was able to find more parameter values
in less time (possibly including model parameters leading to
model behaviours which are not biologically meaningful).

VIII. CONCLUSIONS

We have presented a method to effectively compute patient-
specific predictions from an ODE-based biological model and



clinical records. We overcome the main obstacles in our
clinical setting (scarcity of measurements and fast response
time) with an approach resting on three main pillars: first,
a formalisation of the notion of biological admissibility that
allows us to automatically filter out most parameter values
that do not lead to biologically meaningful system trajecto-
ries; second, a statistical model checking algorithm that, with
arbitrarily high confidence, computes off-line the set S of all
(discretised) Biologically Admissible parameter values; third,
an on-line algorithm that computes from S the best prediction
with the available data. We are currently developing a parallel
version for the presented algorithms.
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