Model Driven Computation of Treatments for Infertility Related Endocrinological Diseases

Stefano Sinisi, Computer Science Department, Sapienza University of Rome, Italy – sinisi.1391213@studenti.uniroma1.it

Motivation

- Infertility affects about 15% of couples in Europe, bearing an increased risk for negative psycho-social functioning.
- Treatment of infertility is expensive and time consuming and has limited success rates.
- In more than 50% of the cases infertility is caused by female health problems, in most cases related to endocrinological diseases.
- Endometriosis, prolactin associated disorders, polycystic ovary syndrome etc. disturb menstrual cycle patterns.

Objectives

Modelling
- Definition of a mathematical model of the human menstrual cycle to simulate infertility-related endocrine disorders.
- Development of algorithms for the design of individualised, patient-specific models, and for the understanding of intra- and inter-individual variability.

Computation
- Model-based verification of treatment protocols and design of individualised protocols.
- Development of the PAEON Virtual Hospital, a web-based software consisting of a knowledge base as a repository for physiological models and patient data, an engine layer for model simulation and validation, a web interface, and web services for external access to the system.

Clinical data collection
- Collect data from normally cycling women to estimate the knowledge base as a repository for physiological models and patient data, an
- Model Driven Computation of Treatments for infertility related endocrinological diseases.

Patient Specific Model Computation

Biologically Admissibility

Param vector λ is biologically admissible (BA) iff: model prediction under λ and model prediction under default param λ_0 are qualitatively similar for all species, modulo bounded time shift and stretch. This means that:
- normalised zero-lag cross-correlation is above given threshold
- normalised average difference is below given threshold
- normalised squared norm difference is below given threshold

Offline Phase

Computes set S of Biologically Admissible (BA) parameters which is complete with arbitrarily high statistical confidence

High-level algorithm:

1. $S = \{ \lambda_0 \}$
2. repeat
 - make hyp. $H_0 = \"\text{Pr\{generate BA } \lambda \text{ outside } S} \gg \varepsilon\"$
 - for a “sufficiently high number” N of times do
 1. generate random param λ
 2. if $\lambda \not\in S$ and λ is BA then add λ to S and break
 3. until S remains unchanged after N attempts
 - H_0 rejected
3. return S

Theorem:
For all $\varepsilon, \delta \in (0, 1)$, if $N \geq \ln(\delta) / \ln(1-\varepsilon)$, then $\text{Pr}[H_0 \text{ rejected } | H_0 \text{ holds}] < \delta$

Online Phase

Given patient measurements, find λ in S which minimises mismatch between model predictions & available measurements.

This project has received funding from EU Seventh Framework Programme for research, technological development and demonstration under grant agreement n. 600773.